Amyloid-β Deposition Prediction With Large Language Model Driven and Task-Oriented Learning of Brain Functional Networks

Yuxiao Liu;Mianxin Liu;Yuanwang Zhang;Yihui Guan;Qihao Guo;Fang Xie;Dinggang Shen
{"title":"Amyloid-β Deposition Prediction With Large Language Model Driven and Task-Oriented Learning of Brain Functional Networks","authors":"Yuxiao Liu;Mianxin Liu;Yuanwang Zhang;Yihui Guan;Qihao Guo;Fang Xie;Dinggang Shen","doi":"10.1109/TMI.2024.3525022","DOIUrl":null,"url":null,"abstract":"Amyloid-<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula> positron emission tomography can reflect the Amyloid-<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula> protein deposition in the brain and thus serves as one of the golden standards for Alzheimer’s disease (AD) diagnosis. However, its practical cost and high radioactivity hinder its application in large-scale early AD screening. Recent neuroscience studies suggest a strong association between changes in functional connectivity network (FCN) derived from functional MRI (fMRI), and deposition patterns of Amyloid-<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula> protein in the brain. This enables an FCN-based approach to assess the Amyloid-<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula> protein deposition with less expense and radioactivity. However, an effective FCN-based Amyloid-<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula> assessment remains lacking for practice. In this paper, we introduce a novel deep learning framework tailored for this task. Our framework comprises three innovative components: 1) a pre-trained Large Language Model Nodal Embedding Encoder, designed to extract task-related features from fMRI signals; 2) a task-oriented Hierarchical-order FCN Learning module, used to enhance the representation of complex correlations among different brain regions for improved prediction of Amyloid-<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula> deposition; and 3) task-feature consistency losses for promoting similarity between predicted and real Amyloid-<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula> values and ensuring effectiveness of predicted Amyloid-<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula> in downstream classification task. Experimental results show superiority of our method over several state-of-the-art FCN-based methods. Additionally, we identify crucial functional sub-networks for predicting Amyloid-<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula> depositions. The proposed method is anticipated to contribute valuable insights into the understanding of mechanisms of AD and its prevention.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 4","pages":"1809-1820"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10820856/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Amyloid- $\beta $ positron emission tomography can reflect the Amyloid- $\beta $ protein deposition in the brain and thus serves as one of the golden standards for Alzheimer’s disease (AD) diagnosis. However, its practical cost and high radioactivity hinder its application in large-scale early AD screening. Recent neuroscience studies suggest a strong association between changes in functional connectivity network (FCN) derived from functional MRI (fMRI), and deposition patterns of Amyloid- $\beta $ protein in the brain. This enables an FCN-based approach to assess the Amyloid- $\beta $ protein deposition with less expense and radioactivity. However, an effective FCN-based Amyloid- $\beta $ assessment remains lacking for practice. In this paper, we introduce a novel deep learning framework tailored for this task. Our framework comprises three innovative components: 1) a pre-trained Large Language Model Nodal Embedding Encoder, designed to extract task-related features from fMRI signals; 2) a task-oriented Hierarchical-order FCN Learning module, used to enhance the representation of complex correlations among different brain regions for improved prediction of Amyloid- $\beta $ deposition; and 3) task-feature consistency losses for promoting similarity between predicted and real Amyloid- $\beta $ values and ensuring effectiveness of predicted Amyloid- $\beta $ in downstream classification task. Experimental results show superiority of our method over several state-of-the-art FCN-based methods. Additionally, we identify crucial functional sub-networks for predicting Amyloid- $\beta $ depositions. The proposed method is anticipated to contribute valuable insights into the understanding of mechanisms of AD and its prevention.
脑功能网络的大语言模型驱动和任务导向学习预测淀粉样蛋白-β沉积
Amyloid- $\beta $正电子发射断层扫描可以反映大脑中淀粉样蛋白的沉积,因此是阿尔茨海默病(AD)诊断的黄金标准之一。然而,它的实际成本和高放射性阻碍了它在大规模早期阿尔茨海默病筛查中的应用。最近的神经科学研究表明,功能性磁共振成像(fMRI)得出的功能连接网络(FCN)的变化与大脑中淀粉样蛋白的沉积模式有很强的关联。这使得基于fcn的方法能够以更低的费用和放射性评估淀粉样蛋白沉积。然而,一个有效的基于fcn的淀粉样蛋白- $\ β $评估在实践中仍然缺乏。在本文中,我们为这项任务引入了一个新的深度学习框架。我们的框架包括三个创新组件:1)一个预训练的大型语言模型节点嵌入编码器,旨在从fMRI信号中提取任务相关特征;2)面向任务的层次顺序FCN学习模块,用于增强不同脑区之间复杂相关性的表示,以改进淀粉样蛋白沉积的预测;3)任务特征一致性损失,以促进预测值与真实值之间的相似性,并确保预测值在下游分类任务中的有效性。实验结果表明,该方法优于几种最先进的基于fcn的方法。此外,我们确定了预测淀粉样蛋白沉积的关键功能子网络。所提出的方法有望为了解AD的机制及其预防提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信