FTDMP: A Framework for Protein-Protein, Protein-DNA, and Protein-RNA Docking and Scoring.

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Kliment Olechnovič, Rita Banciul, Justas Dapkūnas, Česlovas Venclovas
{"title":"FTDMP: A Framework for Protein-Protein, Protein-DNA, and Protein-RNA Docking and Scoring.","authors":"Kliment Olechnovič, Rita Banciul, Justas Dapkūnas, Česlovas Venclovas","doi":"10.1002/prot.26792","DOIUrl":null,"url":null,"abstract":"<p><p>FTDMP is a software framework for biomolecular docking and scoring. It can perform docking of subunits containing one or more protein, DNA, or RNA chains, followed by subsequent scoring of the resulting models. FTDMP can also be used for the ranking of user-provided models of biomolecular complexes, generated by any structure prediction method. FTDMP evaluates models according to the consensus-based method VoroIF-jury, which combines individual scores derived from the Voronoi tessellation of biomolecular structures. In addition to the default scoring mode, FTDMP can easily adopt additional scores; thus, it may be used as a tool to assess newly developed scoring functions. FTDMP was evaluated during blind testing in recent CAPRI experiments and using protein-protein, protein-DNA, and protein-RNA docking benchmarks. It proved to be a useful tool for different research tasks, related to modeling biomolecular interactions. The software, cleaned docking benchmarks, and benchmarking results are available at https://bioinformatics.lt/software/ftdmp/.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26792","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

FTDMP is a software framework for biomolecular docking and scoring. It can perform docking of subunits containing one or more protein, DNA, or RNA chains, followed by subsequent scoring of the resulting models. FTDMP can also be used for the ranking of user-provided models of biomolecular complexes, generated by any structure prediction method. FTDMP evaluates models according to the consensus-based method VoroIF-jury, which combines individual scores derived from the Voronoi tessellation of biomolecular structures. In addition to the default scoring mode, FTDMP can easily adopt additional scores; thus, it may be used as a tool to assess newly developed scoring functions. FTDMP was evaluated during blind testing in recent CAPRI experiments and using protein-protein, protein-DNA, and protein-RNA docking benchmarks. It proved to be a useful tool for different research tasks, related to modeling biomolecular interactions. The software, cleaned docking benchmarks, and benchmarking results are available at https://bioinformatics.lt/software/ftdmp/.

FTDMP:蛋白质-蛋白质,蛋白质- dna和蛋白质- rna对接和评分的框架。
FTDMP是一个用于生物分子对接和评分的软件框架。它可以对含有一个或多个蛋白质、DNA或RNA链的亚基进行对接,然后对结果模型进行后续评分。FTDMP还可用于对任何结构预测方法生成的用户提供的生物分子复合物模型进行排序。FTDMP根据基于共识的方法VoroIF-jury评估模型,该方法结合了从生物分子结构的Voronoi细分中获得的个体分数。除了默认的评分模式,FTDMP可以很容易地采用额外的分数;因此,它可以用作评估新开发的评分功能的工具。在最近的CAPRI实验中,FTDMP在盲测中进行了评估,并使用了蛋白质、蛋白质- dna和蛋白质- rna对接基准。它被证明是一个有用的工具,用于不同的研究任务,与建模生物分子相互作用有关。该软件、清理过的对接基准测试和基准测试结果可在https://bioinformatics.lt/software/ftdmp/上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proteins-Structure Function and Bioinformatics
Proteins-Structure Function and Bioinformatics 生物-生化与分子生物学
CiteScore
5.90
自引率
3.40%
发文量
172
审稿时长
3 months
期刊介绍: PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信