Prevalence of Words and Phrases Associated With Large Language Model-Generated Text in the Nursing Literature.

IF 1.3 4区 医学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Hannah E Bailey, Heather Carter-Templeton, Gabriel M Peterson, Marilyn H Oermann, Jacqueline K Owens
{"title":"Prevalence of Words and Phrases Associated With Large Language Model-Generated Text in the Nursing Literature.","authors":"Hannah E Bailey, Heather Carter-Templeton, Gabriel M Peterson, Marilyn H Oermann, Jacqueline K Owens","doi":"10.1097/CIN.0000000000001237","DOIUrl":null,"url":null,"abstract":"<p><p>All disciplines, including nursing, may be experiencing significant changes with the advent of free, publicly available generative artificial intelligence tools. Recent research has shown the difficulty in distinguishing artificial intelligence-generated text from content that is written by humans, thereby increasing the probability for unverified information shared in scholarly works. The purpose of this study was to determine the extent of generative artificial intelligence usage in published nursing articles. The Dimensions database was used to collect articles with at least one appearance of words and phrases associated with generative artificial intelligence. These articles were then searched for words or phrases known to be disproportionately associated with large language model-based generative artificial intelligence. Several nouns, verbs, adverbs, and phrases had remarkable increases in appearance starting in 2023, suggesting use of generative artificial intelligence. Nurses, authors, reviewers, and editors will likely encounter generative artificial intelligence in their work. Although these sophisticated and emerging tools are promising, we must continue to work toward developing ways to verify accuracy of their content, develop policies that insist on transparent use, and safeguard consumers of the evidence they generate.</p>","PeriodicalId":50694,"journal":{"name":"Cin-Computers Informatics Nursing","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cin-Computers Informatics Nursing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/CIN.0000000000001237","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

All disciplines, including nursing, may be experiencing significant changes with the advent of free, publicly available generative artificial intelligence tools. Recent research has shown the difficulty in distinguishing artificial intelligence-generated text from content that is written by humans, thereby increasing the probability for unverified information shared in scholarly works. The purpose of this study was to determine the extent of generative artificial intelligence usage in published nursing articles. The Dimensions database was used to collect articles with at least one appearance of words and phrases associated with generative artificial intelligence. These articles were then searched for words or phrases known to be disproportionately associated with large language model-based generative artificial intelligence. Several nouns, verbs, adverbs, and phrases had remarkable increases in appearance starting in 2023, suggesting use of generative artificial intelligence. Nurses, authors, reviewers, and editors will likely encounter generative artificial intelligence in their work. Although these sophisticated and emerging tools are promising, we must continue to work toward developing ways to verify accuracy of their content, develop policies that insist on transparent use, and safeguard consumers of the evidence they generate.

护理文献中与大型语言模型生成文本相关的单词和短语的流行。
随着免费、公开的生成式人工智能工具的出现,包括护理在内的所有学科都可能经历重大变化。最近的研究表明,很难将人工智能生成的文本与人类编写的内容区分开来,从而增加了学术著作中共享未经验证信息的可能性。本研究的目的是确定已发表的护理文章中生成人工智能的使用程度。Dimensions数据库用于收集至少有一种与生成式人工智能相关的单词和短语外观的文章。然后在这些文章中搜索已知与基于语言模型的生成式人工智能不成比例相关的单词或短语。从2023年开始,一些名词、动词、副词和短语的出现次数显著增加,这表明使用了生成式人工智能。护士、作者、审稿人和编辑可能会在他们的工作中遇到生成人工智能。尽管这些复杂和新兴的工具很有前途,但我们必须继续努力开发核实其内容准确性的方法,制定坚持透明使用的政策,并保护消费者获取其产生的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cin-Computers Informatics Nursing
Cin-Computers Informatics Nursing 工程技术-护理
CiteScore
2.00
自引率
15.40%
发文量
248
审稿时长
6-12 weeks
期刊介绍: For over 30 years, CIN: Computers, Informatics, Nursing has been at the interface of the science of information and the art of nursing, publishing articles on the latest developments in nursing informatics, research, education and administrative of health information technology. CIN connects you with colleagues as they share knowledge on implementation of electronic health records systems, design decision-support systems, incorporate evidence-based healthcare in practice, explore point-of-care computing in practice and education, and conceptually integrate nursing languages and standard data sets. Continuing education contact hours are available in every issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信