A Newly Synthesized Benzimidazolium Salt: 1-(2-Cyanobenzyl)-3-(4-Vinylbenzyl)-1H-Benzo[D]imidazol-3-ium Chloride as a Potential Anticancer Agent for Colon Cancer Treatment, In Vitro Study
Nazmiye Bitgen, Mustafa Cakir, Senem Akkoc, Hamiyet Donmez-Altuntas
{"title":"A Newly Synthesized Benzimidazolium Salt: 1-(2-Cyanobenzyl)-3-(4-Vinylbenzyl)-1H-Benzo[D]imidazol-3-ium Chloride as a Potential Anticancer Agent for Colon Cancer Treatment, In Vitro Study","authors":"Nazmiye Bitgen, Mustafa Cakir, Senem Akkoc, Hamiyet Donmez-Altuntas","doi":"10.1002/jbt.70112","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Colon cancer is one of the most common cancer-related deaths. Drug resistance is one of the biggest challenges in cancer treatment. Numerous pharmacological and biochemical investigations have documented the benzimidazole ring's anticancer, anti-inflammatory, and antioxidant properties. Within the scope of our project, the effect of newly synthesized benzimidazolium salt (BS) on cell proliferation was tested with MTT assay, and its effect on apoptosis and cell cycle was tested with annexin V and PI in the two different colon cancer cell lines (HT-29 and DLD-1). Our study examined the expressions of some genes related to apoptosis and, additionally, caspase activities with the multicaspase kit.</p>\n <p>BS showed an antiproliferative effect at lower doses in HT-29 colon cancer cells. When HT-29 cells were exposed to a 20 µM dosage, they showed increased caspase activity and apoptosis compared to DLD-1 cells. HT-29 accumulated in the G2/M phase of the cell cycle, whereas DLD-1 cells accumulated more in the S phase. In HT-29 cells, colony formation was inhibited; however, in DLD-1 cells, this effect was insufficient.</p>\n <p>Based on the apoptosis-death pathway, BS is expected to have anti-cancer effects. As a result of this work, this chemical was thoroughly examined in two different colon cancer cell lines, and additional, more comprehensive initiatives are being planned in light of the information obtained from this study.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70112","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Colon cancer is one of the most common cancer-related deaths. Drug resistance is one of the biggest challenges in cancer treatment. Numerous pharmacological and biochemical investigations have documented the benzimidazole ring's anticancer, anti-inflammatory, and antioxidant properties. Within the scope of our project, the effect of newly synthesized benzimidazolium salt (BS) on cell proliferation was tested with MTT assay, and its effect on apoptosis and cell cycle was tested with annexin V and PI in the two different colon cancer cell lines (HT-29 and DLD-1). Our study examined the expressions of some genes related to apoptosis and, additionally, caspase activities with the multicaspase kit.
BS showed an antiproliferative effect at lower doses in HT-29 colon cancer cells. When HT-29 cells were exposed to a 20 µM dosage, they showed increased caspase activity and apoptosis compared to DLD-1 cells. HT-29 accumulated in the G2/M phase of the cell cycle, whereas DLD-1 cells accumulated more in the S phase. In HT-29 cells, colony formation was inhibited; however, in DLD-1 cells, this effect was insufficient.
Based on the apoptosis-death pathway, BS is expected to have anti-cancer effects. As a result of this work, this chemical was thoroughly examined in two different colon cancer cell lines, and additional, more comprehensive initiatives are being planned in light of the information obtained from this study.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.