Keyi Li, Mary S Kim, Wenjin Zhang, Sen Yang, Genevieve J Sippel, Aleksandra Sarcevic, Randall S Burd, Ivan Marsic
{"title":"Human intention recognition for trauma resuscitation: An interpretable deep learning approach for medical process data.","authors":"Keyi Li, Mary S Kim, Wenjin Zhang, Sen Yang, Genevieve J Sippel, Aleksandra Sarcevic, Randall S Burd, Ivan Marsic","doi":"10.1016/j.jbi.2024.104767","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Trauma resuscitation is the initial evaluation and management of injured patients in the emergency department. This time-critical process requires the simultaneous pursuit of multiple resuscitation goals. Recognizing whether the required goal is being pursued can reduce errors in goal-related task performance and improve patient outcomes. The intention to pursue a goal can often be inferred from ongoing and completed treatment activities, but monitoring goal pursuit is cognitively demanding and prone to errors. We introduced an interpretable deep learning-based approach to aid decision making by automatically recognizing goal pursuit during trauma resuscitation.</p><p><strong>Methods: </strong>We developed a predictive model to recognize the pursuit of two resuscitation goals: airway stabilization and circulatory support. We used event logs of 381 pediatric trauma resuscitations from August 2014 to November 2022 to train a neural network model with a dual-GRU structure that learns from both time-level and activity-type-level features. Our model makes predictions based on a sequence of activities and corresponding timestamps. To enhance the model and facilitate interpretation of predictions, we used the attention weights assigned by our model to represent the importance of features. These weights identified the critical time points and contributing activities during a goal pursuit.</p><p><strong>Results: </strong>Our model achieved an average area under the receiver operating characteristic curve (AUC) score of 0.84 for recognizing airway stabilization and 0.83 for recognizing circulatory support. The most contributing activities and timestamps were aligned with domain knowledge.</p><p><strong>Conclusion: </strong>Our interpretable predictive model can recognize provider intention based on a limited number of treatment activities. The model outperformed existing predictive models for medical events in accuracy and in interpretability. Integrating our model into a decision-support system would automate the tracking of provider actions, optimizing workflow to ensure timely delivery of care.</p>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":" ","pages":"104767"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jbi.2024.104767","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Trauma resuscitation is the initial evaluation and management of injured patients in the emergency department. This time-critical process requires the simultaneous pursuit of multiple resuscitation goals. Recognizing whether the required goal is being pursued can reduce errors in goal-related task performance and improve patient outcomes. The intention to pursue a goal can often be inferred from ongoing and completed treatment activities, but monitoring goal pursuit is cognitively demanding and prone to errors. We introduced an interpretable deep learning-based approach to aid decision making by automatically recognizing goal pursuit during trauma resuscitation.
Methods: We developed a predictive model to recognize the pursuit of two resuscitation goals: airway stabilization and circulatory support. We used event logs of 381 pediatric trauma resuscitations from August 2014 to November 2022 to train a neural network model with a dual-GRU structure that learns from both time-level and activity-type-level features. Our model makes predictions based on a sequence of activities and corresponding timestamps. To enhance the model and facilitate interpretation of predictions, we used the attention weights assigned by our model to represent the importance of features. These weights identified the critical time points and contributing activities during a goal pursuit.
Results: Our model achieved an average area under the receiver operating characteristic curve (AUC) score of 0.84 for recognizing airway stabilization and 0.83 for recognizing circulatory support. The most contributing activities and timestamps were aligned with domain knowledge.
Conclusion: Our interpretable predictive model can recognize provider intention based on a limited number of treatment activities. The model outperformed existing predictive models for medical events in accuracy and in interpretability. Integrating our model into a decision-support system would automate the tracking of provider actions, optimizing workflow to ensure timely delivery of care.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.