TRIM32 regulates insulin sensitivity by controlling insulin receptor degradation in the liver.

IF 6.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shilpa Thakur, Priya Rawat, Budheswar Dehury, Prosenjit Mondal
{"title":"TRIM32 regulates insulin sensitivity by controlling insulin receptor degradation in the liver.","authors":"Shilpa Thakur, Priya Rawat, Budheswar Dehury, Prosenjit Mondal","doi":"10.1038/s44319-024-00348-7","DOIUrl":null,"url":null,"abstract":"<p><p>Impaired insulin receptor signaling is strongly linked to obesity-related metabolic conditions like non-alcoholic fatty liver disease (NAFLD) and Type 2 diabetes (T2DM). However, the exact mechanisms behind impaired insulin receptor (INSR) signaling in obesity induced by a high-fat diet remain elusive. In this study, we identify an E3 ubiquitin ligase, tripartite motif-containing protein 32 (TRIM32), as a key regulator of hepatic insulin signaling that targets the insulin receptor (INSR) for ubiquitination and proteasomal degradation in high-fat diet (HFD) mice. HFD induces the nuclear translocation of SREBP-1c (Sterol Regulatory Element-Binding Protein 1c), resulting in increased expression of TRIM32 in hepatocytes. TRIM32 ubiquitylates INSR and facilitates its proteasomal degradation, leading to severe insulin resistance and fat accumulation within the liver of high-fat diet induced obese (DIO) mice. Conversely, liver-specific knockdown of TRIM32 enhances INSR expression and hepatic insulin sensitivity. Reduced AMPK signaling and phosphorylation of SREBP-1c at S372 in high-fat DIO mice promotes the nuclear translocation of SREBP-1c, leading to increased TRIM32 expression. In conclusion, our results demonstrate that TRIM32 promotes diet-induced hepatic insulin resistance by targeting the INSR to degradation.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-024-00348-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Impaired insulin receptor signaling is strongly linked to obesity-related metabolic conditions like non-alcoholic fatty liver disease (NAFLD) and Type 2 diabetes (T2DM). However, the exact mechanisms behind impaired insulin receptor (INSR) signaling in obesity induced by a high-fat diet remain elusive. In this study, we identify an E3 ubiquitin ligase, tripartite motif-containing protein 32 (TRIM32), as a key regulator of hepatic insulin signaling that targets the insulin receptor (INSR) for ubiquitination and proteasomal degradation in high-fat diet (HFD) mice. HFD induces the nuclear translocation of SREBP-1c (Sterol Regulatory Element-Binding Protein 1c), resulting in increased expression of TRIM32 in hepatocytes. TRIM32 ubiquitylates INSR and facilitates its proteasomal degradation, leading to severe insulin resistance and fat accumulation within the liver of high-fat diet induced obese (DIO) mice. Conversely, liver-specific knockdown of TRIM32 enhances INSR expression and hepatic insulin sensitivity. Reduced AMPK signaling and phosphorylation of SREBP-1c at S372 in high-fat DIO mice promotes the nuclear translocation of SREBP-1c, leading to increased TRIM32 expression. In conclusion, our results demonstrate that TRIM32 promotes diet-induced hepatic insulin resistance by targeting the INSR to degradation.

TRIM32通过控制肝脏中胰岛素受体的降解来调节胰岛素敏感性。
胰岛素受体信号受损与肥胖相关的代谢疾病,如非酒精性脂肪性肝病(NAFLD)和2型糖尿病(T2DM)密切相关。然而,高脂肪饮食引起的肥胖中胰岛素受体(INSR)信号受损的确切机制仍不清楚。在这项研究中,我们发现了一种E3泛素连接酶,即含有三方基元的蛋白32 (TRIM32),作为肝脏胰岛素信号的关键调节剂,靶向胰岛素受体(INSR),在高脂肪饮食(HFD)小鼠中实现泛素化和蛋白酶体降解。HFD诱导SREBP-1c(固醇调节元件结合蛋白1c)的核易位,导致肝细胞中TRIM32的表达增加。TRIM32泛素化INSR并促进其蛋白酶体降解,导致高脂肪饮食诱导的肥胖(DIO)小鼠肝脏内严重的胰岛素抵抗和脂肪堆积。相反,肝脏特异性敲低TRIM32可增强INSR表达和肝脏胰岛素敏感性。在高脂DIO小鼠中,AMPK信号的减少和SREBP-1c在S372位点的磷酸化促进了SREBP-1c的核易位,导致TRIM32的表达增加。总之,我们的研究结果表明TRIM32通过靶向INSR降解来促进饮食诱导的肝脏胰岛素抵抗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EMBO Reports
EMBO Reports 生物-生化与分子生物学
CiteScore
11.20
自引率
1.30%
发文量
267
审稿时长
1 months
期刊介绍: EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings. The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that: Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels. Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies. Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding. Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts. EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry. 
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信