RAGE is a key regulator of ductular reaction-mediated fibrosis during cholestasis.

IF 6.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Wai-Ling Macrina Lam, Gisela Gabernet, Tanja Poth, Melanie Sator-Schmitt, Morgana Barroso Oquendo, Bettina Kast, Sabrina Lohr, Aurora de Ponti, Lena Weiß, Martin Schneider, Dominic Helm, Karin Müller-Decker, Peter Schirmacher, Mathias Heikenwälder, Ursula Klingmüller, Doris Schneller, Fabian Geisler, Sven Nahnsen, Peter Angel
{"title":"RAGE is a key regulator of ductular reaction-mediated fibrosis during cholestasis.","authors":"Wai-Ling Macrina Lam, Gisela Gabernet, Tanja Poth, Melanie Sator-Schmitt, Morgana Barroso Oquendo, Bettina Kast, Sabrina Lohr, Aurora de Ponti, Lena Weiß, Martin Schneider, Dominic Helm, Karin Müller-Decker, Peter Schirmacher, Mathias Heikenwälder, Ursula Klingmüller, Doris Schneller, Fabian Geisler, Sven Nahnsen, Peter Angel","doi":"10.1038/s44319-024-00356-7","DOIUrl":null,"url":null,"abstract":"<p><p>Ductular reaction (DR) is the hallmark of cholestatic diseases manifested in the proliferation of bile ductules lined by biliary epithelial cells (BECs). It is commonly associated with an increased risk of fibrosis and liver failure. The receptor for advanced glycation end products (RAGE) was identified as a critical mediator of DR during chronic injury. Yet, the direct link between RAGE-mediated DR and fibrosis as well as the mode of interaction between BECs and hepatic stellate cells (HSCs) to drive fibrosis remain elusive. Here, we delineate the specific function of RAGE on BECs during DR and its potential association with fibrosis in the context of cholestasis. Employing a biliary lineage tracing cholestatic liver injury mouse model, combined with whole transcriptome sequencing and in vitro analyses, we reveal a role for BEC-specific Rage activity in fostering a pro-fibrotic milieu. RAGE is predominantly expressed in BECs and contributes to DR. Notch ligand Jagged1 is secreted from activated BECs in a Rage-dependent manner and signals HSCs in trans, eventually enhancing fibrosis during cholestasis.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-024-00356-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ductular reaction (DR) is the hallmark of cholestatic diseases manifested in the proliferation of bile ductules lined by biliary epithelial cells (BECs). It is commonly associated with an increased risk of fibrosis and liver failure. The receptor for advanced glycation end products (RAGE) was identified as a critical mediator of DR during chronic injury. Yet, the direct link between RAGE-mediated DR and fibrosis as well as the mode of interaction between BECs and hepatic stellate cells (HSCs) to drive fibrosis remain elusive. Here, we delineate the specific function of RAGE on BECs during DR and its potential association with fibrosis in the context of cholestasis. Employing a biliary lineage tracing cholestatic liver injury mouse model, combined with whole transcriptome sequencing and in vitro analyses, we reveal a role for BEC-specific Rage activity in fostering a pro-fibrotic milieu. RAGE is predominantly expressed in BECs and contributes to DR. Notch ligand Jagged1 is secreted from activated BECs in a Rage-dependent manner and signals HSCs in trans, eventually enhancing fibrosis during cholestasis.

RAGE是胆汁淤积期间导管反应介导纤维化的关键调节因子。
胆管反应(DR)是胆汁淤积性疾病的标志,表现为胆道上皮细胞(BECs)内衬的胆管增生。它通常与纤维化和肝功能衰竭的风险增加有关。晚期糖基化终产物受体(RAGE)被认为是慢性损伤中DR的关键介质。然而,rage介导的DR与纤维化之间的直接联系以及BECs与肝星状细胞(hsc)之间驱动纤维化的相互作用模式仍然难以捉摸。在这里,我们描述了RAGE在DR期间对BECs的特定功能及其在胆汁淤积背景下与纤维化的潜在关联。采用胆道谱系追踪胆汁淤积性肝损伤小鼠模型,结合全转录组测序和体外分析,我们揭示了bc特异性Rage活性在促进纤维化环境中的作用。RAGE主要在BECs中表达,并对dr起作用。Notch配体Jagged1以RAGE依赖的方式从活化的BECs中分泌,并在反式中向hsc发出信号,最终在胆汁淤积期间增强纤维化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EMBO Reports
EMBO Reports 生物-生化与分子生物学
CiteScore
11.20
自引率
1.30%
发文量
267
审稿时长
1 months
期刊介绍: EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings. The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that: Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels. Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies. Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding. Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts. EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry. 
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信