Adsorption properties and mechanisms of Cd by co-pyrolysis composite material derived from peanut biochar and tailing waste.

IF 3.2 3区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Xiaoqing Zhang, Jiong Li, Xin Li, Zhihua Chen, Dajun Ren, Shuqin Zhang
{"title":"Adsorption properties and mechanisms of Cd by co-pyrolysis composite material derived from peanut biochar and tailing waste.","authors":"Xiaoqing Zhang, Jiong Li, Xin Li, Zhihua Chen, Dajun Ren, Shuqin Zhang","doi":"10.1007/s10653-024-02352-1","DOIUrl":null,"url":null,"abstract":"<p><p>Cadmium (Cd) contamination in aquatic systems is a widespread environmental issue. In this study, a solid waste iron tailings and biochar hybrid (Fe-TWBC) was successfully synthesized derived from co-pyrolysis of peanut shell and tailing waste (Fe-TW). Characterization analyses showed that the metal oxides from solid waste iron tailings successfully loaded onto the biochar surface, with more functional groups in Fe-TWBC. The Fe-TWBC had a maximum capacity of 95.06 mg·g<sup>-1</sup> on Cd<sup>2+</sup> adsorption, which was 1.40 times to pristine BC (70.46 mg·g<sup>-1</sup>) and 2.53 times to Fe-TW (37.51 mg·g<sup>-1</sup>). The adsorption behavior followed the pseudo-second-order kinetics and Freundlich models. DFT calculations revealed that the O-top of Fe-O group was the most chemically reactive site for Cd<sup>2+</sup> adsorption with the high adsorption energy values of - 4.05 eV, short O-Cd bond lengths (2.133 Å), low electrostatic potentials in small blue regions near the O atom of Fe-O group, low energy gap (0.22 eV) and large electrophilic Fukui index (f<sup>-</sup> = 0.18). Overall, these findings suggest that Fe-TWBC is effective in removing Cd<sup>2+</sup> from aqueous solution and promotes the utilization of biowaste and solid waste iron tailing waste for cleaner production.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 2","pages":"37"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02352-1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cadmium (Cd) contamination in aquatic systems is a widespread environmental issue. In this study, a solid waste iron tailings and biochar hybrid (Fe-TWBC) was successfully synthesized derived from co-pyrolysis of peanut shell and tailing waste (Fe-TW). Characterization analyses showed that the metal oxides from solid waste iron tailings successfully loaded onto the biochar surface, with more functional groups in Fe-TWBC. The Fe-TWBC had a maximum capacity of 95.06 mg·g-1 on Cd2+ adsorption, which was 1.40 times to pristine BC (70.46 mg·g-1) and 2.53 times to Fe-TW (37.51 mg·g-1). The adsorption behavior followed the pseudo-second-order kinetics and Freundlich models. DFT calculations revealed that the O-top of Fe-O group was the most chemically reactive site for Cd2+ adsorption with the high adsorption energy values of - 4.05 eV, short O-Cd bond lengths (2.133 Å), low electrostatic potentials in small blue regions near the O atom of Fe-O group, low energy gap (0.22 eV) and large electrophilic Fukui index (f- = 0.18). Overall, these findings suggest that Fe-TWBC is effective in removing Cd2+ from aqueous solution and promotes the utilization of biowaste and solid waste iron tailing waste for cleaner production.

花生生物炭与尾砂共热解复合材料对Cd的吸附性能及机理
水生系统中的镉污染是一个广泛存在的环境问题。本研究以花生壳和尾渣(Fe-TW)共热解为原料,成功合成了固体废铁尾矿与生物炭混合料(Fe-TWBC)。表征分析表明,固体废铁尾矿中的金属氧化物成功加载到生物炭表面,Fe-TWBC中官能团较多。Fe-TWBC对Cd2+的最大吸附量为95.06 mg·g-1,是原始BC (70.46 mg·g-1)的1.40倍,是Fe-TW (37.51 mg·g-1)的2.53倍。吸附行为符合拟二级动力学和Freundlich模型。DFT计算表明,Fe-O基团的O-顶是Cd2+吸附最活跃的位置,吸附能高(- 4.05 eV), O- cd键长短(2.133 Å), Fe-O基团O原子附近蓝色小区域静电势低,能差小(0.22 eV),亲电性福井指数大(f- = 0.18)。综上所述,Fe-TWBC能有效去除水中的Cd2+,促进生物废弃物和铁尾矿固体废弃物的清洁利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Geochemistry and Health
Environmental Geochemistry and Health 环境科学-工程:环境
CiteScore
8.00
自引率
4.80%
发文量
279
审稿时长
4.2 months
期刊介绍: Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people. Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes. The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信