Qiongzhen Zeng, Zixin Chen, Shan Li, Ziwei Huang, Zhe Ren, Cuifang Ye, Xiao Wang, Jun Zhou, Kaisheng Liu, Kai Zheng, Yifei Wang
{"title":"HDAC6 deacetylates TRIM56 to negatively regulate cGAS-STING-mediated type I interferon responses.","authors":"Qiongzhen Zeng, Zixin Chen, Shan Li, Ziwei Huang, Zhe Ren, Cuifang Ye, Xiao Wang, Jun Zhou, Kaisheng Liu, Kai Zheng, Yifei Wang","doi":"10.1038/s44319-024-00358-5","DOIUrl":null,"url":null,"abstract":"<p><p>Histone deacetylase HDAC6 has been implicated in regulating antiviral innate immunity. However, its precise function in response to DNA virus infection remains elusive. Herein, we find that HDAC6 deficiency promotes the activation of cGAS-STING signaling and type I interferon (IFN) production, both in vitro and in vivo, resulting in a decrease in HSV-1 infection. Mechanistically, HDAC6 deacetylates tripartite motif protein 56 (TRIM56) at K110 in mice, thereby impairing the monoubiquitination cGAS and its DNA binding ability. Overexpression of TRIM56 K110Q protects mice against HSV-1 infection. Notably, different amino acids at position 110 of TRIM56 in human and mouse cause species-specific IFN responses. Further, we show that during early stages of HSV-1 infection, the viral protein US3 phosphorylates HDAC6 to inhibit the cGAS-mediated antiviral response. Our results suggest that HDAC6 inhibits cGAS activation through TRIM56 deacetylation in a species-specific manner.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-024-00358-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Histone deacetylase HDAC6 has been implicated in regulating antiviral innate immunity. However, its precise function in response to DNA virus infection remains elusive. Herein, we find that HDAC6 deficiency promotes the activation of cGAS-STING signaling and type I interferon (IFN) production, both in vitro and in vivo, resulting in a decrease in HSV-1 infection. Mechanistically, HDAC6 deacetylates tripartite motif protein 56 (TRIM56) at K110 in mice, thereby impairing the monoubiquitination cGAS and its DNA binding ability. Overexpression of TRIM56 K110Q protects mice against HSV-1 infection. Notably, different amino acids at position 110 of TRIM56 in human and mouse cause species-specific IFN responses. Further, we show that during early stages of HSV-1 infection, the viral protein US3 phosphorylates HDAC6 to inhibit the cGAS-mediated antiviral response. Our results suggest that HDAC6 inhibits cGAS activation through TRIM56 deacetylation in a species-specific manner.
期刊介绍:
EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings.
The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that:
Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels.
Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies.
Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding.
Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts.
EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry.