Jun Zhang, Yan Zhang, Xing Li, Yindi Bao, Jing Yang
{"title":"Has_circ_ASH1L acts as a sponge for miR-1254 to promote the malignant progression of cervical cancer by targeting CD36.","authors":"Jun Zhang, Yan Zhang, Xing Li, Yindi Bao, Jing Yang","doi":"10.1038/s41417-024-00866-5","DOIUrl":null,"url":null,"abstract":"<p><p>Cervical cancer (CC) is a prevalent gynecological malignancy. Increasing evidence suggests that circular RNAs (circRNAs) play a pivotal role in the pathogenesis of CC. However, the regulatory function of circ_ASH1L in CC remains elusive. In this study, we aim to elucidate the precise role and underlying mechanism of circ_ASH1L in the malignant progression of CC. The human CC dataset GSE102686 was extracted from the Gene Expression Omnibus (GEO) database for the analysis of differentially expressed circRNAs. Target gene prediction softwares were utilized to predict the binding of miRNAs to circ_ASH1L sponge. The expression level of circ_ASH1L in CC tissues and cells was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The characteristics of circ_ASH1L were determined by RNase R digestion, actinomycin D, and nucleo-plasmic separation assays. The effects of circ_ASH1L, miR-1254, and CD36 gain-and-loss on the malignant progression of CC were investigated using Cell Counting Kit-8 (CCK-8), colony formation, flow cytometry, wound scratch, transwell, and Western blot assay. The effect of circ_ASH1L on tumorigenicity of CC cells in vivo was evaluated in nude mice through tumor xenograft assay. The targeted regulatory relationship between circ_ASH1L/miR-1254 as well as miR-1254/CD36 was validated by dual-luciferase reporter assay. We screened the differentially expressed circ_ASH1L from the GEO dataset GSE102686 and confirmed its circular structure. Furthermore, we observed a significant upregulation of circ_ASH1L in both CC tissues and cells. Overexpression of circ_ASH1L promotes proliferation, invasion, and migration of CC cells while inhibiting cell apoptosis. However, silencing circ_ASH1L showed opposite results and inhibited tumorigenicity of CC cells in nude mice. Furthermore, we have identified circ_ASH1L as a miR-1254 sponge in CC cells. Notably, our in vitro experiments demonstrated that exogenously modulating the expression of miR-1254 effectively counteracted the impact of circ_ASH1L on the malignant phenotypic characteristics of CC cells. Similarly, modulation of CD36 expression efficiently counteracted the effect of miR-1254 on the malignant biological behavior of CC cells. In conclusion, circ_ASH1L promoted the malignant progression of CC via upregulating CD36 expression through sponging miR-1254.</p>","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41417-024-00866-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cervical cancer (CC) is a prevalent gynecological malignancy. Increasing evidence suggests that circular RNAs (circRNAs) play a pivotal role in the pathogenesis of CC. However, the regulatory function of circ_ASH1L in CC remains elusive. In this study, we aim to elucidate the precise role and underlying mechanism of circ_ASH1L in the malignant progression of CC. The human CC dataset GSE102686 was extracted from the Gene Expression Omnibus (GEO) database for the analysis of differentially expressed circRNAs. Target gene prediction softwares were utilized to predict the binding of miRNAs to circ_ASH1L sponge. The expression level of circ_ASH1L in CC tissues and cells was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The characteristics of circ_ASH1L were determined by RNase R digestion, actinomycin D, and nucleo-plasmic separation assays. The effects of circ_ASH1L, miR-1254, and CD36 gain-and-loss on the malignant progression of CC were investigated using Cell Counting Kit-8 (CCK-8), colony formation, flow cytometry, wound scratch, transwell, and Western blot assay. The effect of circ_ASH1L on tumorigenicity of CC cells in vivo was evaluated in nude mice through tumor xenograft assay. The targeted regulatory relationship between circ_ASH1L/miR-1254 as well as miR-1254/CD36 was validated by dual-luciferase reporter assay. We screened the differentially expressed circ_ASH1L from the GEO dataset GSE102686 and confirmed its circular structure. Furthermore, we observed a significant upregulation of circ_ASH1L in both CC tissues and cells. Overexpression of circ_ASH1L promotes proliferation, invasion, and migration of CC cells while inhibiting cell apoptosis. However, silencing circ_ASH1L showed opposite results and inhibited tumorigenicity of CC cells in nude mice. Furthermore, we have identified circ_ASH1L as a miR-1254 sponge in CC cells. Notably, our in vitro experiments demonstrated that exogenously modulating the expression of miR-1254 effectively counteracted the impact of circ_ASH1L on the malignant phenotypic characteristics of CC cells. Similarly, modulation of CD36 expression efficiently counteracted the effect of miR-1254 on the malignant biological behavior of CC cells. In conclusion, circ_ASH1L promoted the malignant progression of CC via upregulating CD36 expression through sponging miR-1254.
期刊介绍:
Cancer Gene Therapy is the essential gene and cellular therapy resource for cancer researchers and clinicians, keeping readers up to date with the latest developments in gene and cellular therapies for cancer. The journal publishes original laboratory and clinical research papers, case reports and review articles. Publication topics include RNAi approaches, drug resistance, hematopoietic progenitor cell gene transfer, cancer stem cells, cellular therapies, homologous recombination, ribozyme technology, antisense technology, tumor immunotherapy and tumor suppressors, translational research, cancer therapy, gene delivery systems (viral and non-viral), anti-gene therapy (antisense, siRNA & ribozymes), apoptosis; mechanisms and therapies, vaccine development, immunology and immunotherapy, DNA synthesis and repair.
Cancer Gene Therapy publishes the results of laboratory investigations, preclinical studies, and clinical trials in the field of gene transfer/gene therapy and cellular therapies as applied to cancer research. Types of articles published include original research articles; case reports; brief communications; review articles in the main fields of drug resistance/sensitivity, gene therapy, cellular therapy, tumor suppressor and anti-oncogene therapy, cytokine/tumor immunotherapy, etc.; industry perspectives; and letters to the editor.