Mingzhi Yuan, Ao Shen, Yingfan Ma, Jie Du, Bohan An, Manning Wang
{"title":"ProteinF3S: boosting enzyme function prediction by fusing protein sequence, structure, and surface.","authors":"Mingzhi Yuan, Ao Shen, Yingfan Ma, Jie Du, Bohan An, Manning Wang","doi":"10.1093/bib/bbae695","DOIUrl":null,"url":null,"abstract":"<p><p>Proteins can be represented in different data forms, including sequence, structure, and surface, each of which has unique advantages and certain limitations. It is promising to fuse the complementary information among them. In this work, we propose a framework called ProteinF3S for enzyme function prediction that fuses the complementary information across protein sequence, structure, and surface. To achieve more effective fusion, we propose a multi-scale bidirectional fusion strategy between protein structure and surface, in which the hierarchical features of a surface encoder and a structure encoder interact with each other bidirectionally. Based on these interactions, more distinctive features can be obtained. After that, we achieve further fusion by concatenating the sequence features with the features containing structure and surface information, so that better performance can be achieved. To validate our method, we conduct extensive experiments on tasks including enzyme reaction classification and enzyme commission number prediction. Our method achieves new state-of-the-art performance and shows that fusing different forms of data is effective in enzyme function prediction.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697223/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae695","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Proteins can be represented in different data forms, including sequence, structure, and surface, each of which has unique advantages and certain limitations. It is promising to fuse the complementary information among them. In this work, we propose a framework called ProteinF3S for enzyme function prediction that fuses the complementary information across protein sequence, structure, and surface. To achieve more effective fusion, we propose a multi-scale bidirectional fusion strategy between protein structure and surface, in which the hierarchical features of a surface encoder and a structure encoder interact with each other bidirectionally. Based on these interactions, more distinctive features can be obtained. After that, we achieve further fusion by concatenating the sequence features with the features containing structure and surface information, so that better performance can be achieved. To validate our method, we conduct extensive experiments on tasks including enzyme reaction classification and enzyme commission number prediction. Our method achieves new state-of-the-art performance and shows that fusing different forms of data is effective in enzyme function prediction.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.