Directed recurrence networks for the analysis of nonlinear and complex dynamical systems.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-01-01 DOI:10.1063/5.0235311
Rémi Delage, Toshihiko Nakata
{"title":"Directed recurrence networks for the analysis of nonlinear and complex dynamical systems.","authors":"Rémi Delage, Toshihiko Nakata","doi":"10.1063/5.0235311","DOIUrl":null,"url":null,"abstract":"<p><p>Complex network approaches have been emerging as an analysis tool for dynamical systems. Different reconstruction methods from time series have been shown to reveal complicated behaviors that can be quantified from the network's topology. Directed recurrence networks have recently been suggested as one such method, complementing the already successful recurrence networks and expanding the applications of recurrence analysis. We investigate here their performance for the analysis of nonlinear and complex dynamical systems. It is shown that there is a strong parallel with previous Markov chain approximations of the transfer operator, as well as a few differences explained by their structure. Notably, the spectral analysis provides crucial information on the dynamics of the system, such as its complexity or dynamical patterns and their stability. Possible advantages of the directed recurrence network approach include the preserved data resolution and well defined recurrence threshold.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0235311","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Complex network approaches have been emerging as an analysis tool for dynamical systems. Different reconstruction methods from time series have been shown to reveal complicated behaviors that can be quantified from the network's topology. Directed recurrence networks have recently been suggested as one such method, complementing the already successful recurrence networks and expanding the applications of recurrence analysis. We investigate here their performance for the analysis of nonlinear and complex dynamical systems. It is shown that there is a strong parallel with previous Markov chain approximations of the transfer operator, as well as a few differences explained by their structure. Notably, the spectral analysis provides crucial information on the dynamics of the system, such as its complexity or dynamical patterns and their stability. Possible advantages of the directed recurrence network approach include the preserved data resolution and well defined recurrence threshold.

非线性和复杂动力系统的有向递归网络分析。
复杂网络方法已成为动态系统的一种分析工具。不同的时间序列重建方法已经被证明可以揭示复杂的行为,这些行为可以从网络的拓扑结构中量化。有向递归网络最近被提出作为一种这样的方法,补充了已经成功的递归网络并扩展了递归分析的应用。本文研究了它们在分析非线性和复杂动力系统中的性能。结果表明,该传递算子与以往的马尔可夫链近似具有很强的相似性,但在结构上也存在一些差异。值得注意的是,光谱分析提供了系统动力学的关键信息,例如其复杂性或动态模式及其稳定性。有向递归网络方法的可能优点包括保留数据分辨率和定义良好的递归阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信