{"title":"Continuum limit of the adaptive Kuramoto model.","authors":"Rok Cestnik, Erik A Martens","doi":"10.1063/5.0226759","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the dynamics of the adaptive Kuramoto model with slow adaptation in the continuum limit, N→∞. This model is distinguished by dense multistability, where multiple states coexist for the same system parameters. The underlying cause of this multistability is that some oscillators can lock at different phases or switch between locking and drifting depending on their initial conditions. We identify new states, such as two-cluster states. To simplify the analysis, we introduce an approximate reduction of the model via row-averaging of the coupling matrix. We derive a self-consistency equation for the reduced model and present a stability diagram illustrating the effects of positive and negative adaptation. Our theoretical findings are validated through numerical simulations of a large finite system. Comparisons of previous work highlight the significant influence of adaptation on synchronization behavior.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0226759","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the dynamics of the adaptive Kuramoto model with slow adaptation in the continuum limit, N→∞. This model is distinguished by dense multistability, where multiple states coexist for the same system parameters. The underlying cause of this multistability is that some oscillators can lock at different phases or switch between locking and drifting depending on their initial conditions. We identify new states, such as two-cluster states. To simplify the analysis, we introduce an approximate reduction of the model via row-averaging of the coupling matrix. We derive a self-consistency equation for the reduced model and present a stability diagram illustrating the effects of positive and negative adaptation. Our theoretical findings are validated through numerical simulations of a large finite system. Comparisons of previous work highlight the significant influence of adaptation on synchronization behavior.
期刊介绍:
Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.