Technical validation of the Zeto wireless, dry electrode EEG system.

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Zoltan Nadasdy, Adam S Fogarty, Robert S Fisher, Christopher T Primiani, Kevin D Graber
{"title":"Technical validation of the Zeto wireless, dry electrode EEG system.","authors":"Zoltan Nadasdy, Adam S Fogarty, Robert S Fisher, Christopher T Primiani, Kevin D Graber","doi":"10.1088/2057-1976/ada4b6","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Clinical adoption of innovative EEG technology is contingent on the non-inferiority of the new devices relative to conventional ones. We present the four key results from testing the signal quality of Zeto's WR 19 EEG system against a conventional EEG system conducted on patients in a clinical setting.<i>Methods.</i>We performed 30 min simultaneous recordings using the Zeto WR 19 (zEEG) and a conventional clinical EEG system (cEEG) in a cohort of 15 patients. We compared the signal quality between the two EEG systems by computing time domain statistics, waveform correlation, spectral density, signal-to-noise ratio and signal stability.<i>Results.</i>All statistical comparisons resulted in signal quality non-inferior relative to cEEG. (i) Time domain statistics, including the Hjorth parameters, showed equivalence between the two systems, except for a significant reduction of sensitivity to electric noise in zEEG relative to cEEG. (ii) The point-by-point waveform correlation between the two systems was acceptable (r > 0.6; P < 0.001). (iii) Each of the 15 datasets showed a high spectral correlation (r > 0.99; P < 0.001) and overlapping spectral density across all electrode positions, indicating no systematic signal distortion. (iv) The mean signal-to-noise ratio (SNR) of the zEEG system exceeded that of the cEEG by 4.82 dB, equivalent to a 16% improvement. (v) The signal stability was maintained through the recordings.<i>Conclusion.</i>In terms of signal quality, the zEEG system is non-inferior to conventional clinical EEG systems with respect to all relevant technical parameters that determine EEG readability and interpretability. Zeto's WR 19 wireless dry electrode system has signal quality in the clinical EEG space at least equivalent to traditional cEEG recordings.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ada4b6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.Clinical adoption of innovative EEG technology is contingent on the non-inferiority of the new devices relative to conventional ones. We present the four key results from testing the signal quality of Zeto's WR 19 EEG system against a conventional EEG system conducted on patients in a clinical setting.Methods.We performed 30 min simultaneous recordings using the Zeto WR 19 (zEEG) and a conventional clinical EEG system (cEEG) in a cohort of 15 patients. We compared the signal quality between the two EEG systems by computing time domain statistics, waveform correlation, spectral density, signal-to-noise ratio and signal stability.Results.All statistical comparisons resulted in signal quality non-inferior relative to cEEG. (i) Time domain statistics, including the Hjorth parameters, showed equivalence between the two systems, except for a significant reduction of sensitivity to electric noise in zEEG relative to cEEG. (ii) The point-by-point waveform correlation between the two systems was acceptable (r > 0.6; P < 0.001). (iii) Each of the 15 datasets showed a high spectral correlation (r > 0.99; P < 0.001) and overlapping spectral density across all electrode positions, indicating no systematic signal distortion. (iv) The mean signal-to-noise ratio (SNR) of the zEEG system exceeded that of the cEEG by 4.82 dB, equivalent to a 16% improvement. (v) The signal stability was maintained through the recordings.Conclusion.In terms of signal quality, the zEEG system is non-inferior to conventional clinical EEG systems with respect to all relevant technical parameters that determine EEG readability and interpretability. Zeto's WR 19 wireless dry electrode system has signal quality in the clinical EEG space at least equivalent to traditional cEEG recordings.

Zeto无线干电极脑电图系统的技术验证。
目的:创新脑电图技术的临床应用取决于新设备与传统设备相比是否无劣势。我们介绍了在临床环境中对患者进行的 Zeto WR19 脑电图系统与传统脑电图系统信号质量测试的四项主要结果:我们使用 Zeto WR19 (zEEG) 和传统临床脑电图系统 (cEEG) 对 15 名患者进行了 30 分钟的同步记录。我们通过计算时域统计、波形相关性、频谱密度、信噪比和信号稳定性来比较两种脑电图系统的信号质量:所有统计比较结果均表明,信号质量不劣于 cEEG。(i) 时域统计(包括 Hjorth 参数)显示,除了 zEEG 相对于 cEEG 对电噪声的敏感性显著降低之外,这两种系统的性能相当。(ii) 两种系统的逐点波形相关性可以接受(r>0.6;P0.99;P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信