A NEW MODEL OF CHRONIC KIDNEY DISEASE, METABOLIC DERANGEMENTS, AND HEART FAILURE WITH PRESERVED EJECTION FRACTION IN AGING SWINE.

IF 4.3 3区 医学 Q1 UROLOGY & NEPHROLOGY
Alejandro R Chade, Darla L Tharp, Rhys Sitz, Elizabeth A McCarthy, Kumar Shivam, Sara Kazeminia, Alfonso Eirin
{"title":"A NEW MODEL OF CHRONIC KIDNEY DISEASE, METABOLIC DERANGEMENTS, AND HEART FAILURE WITH PRESERVED EJECTION FRACTION IN AGING SWINE.","authors":"Alejandro R Chade, Darla L Tharp, Rhys Sitz, Elizabeth A McCarthy, Kumar Shivam, Sara Kazeminia, Alfonso Eirin","doi":"10.1159/000543327","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Chronic kidney disease (CKD) and heart failure with preserved ejection fraction (HFpEF) are more prevalent in the elderly. There is a lack of large animal models that allow the study of the impact of age on CKD and HFpEF in a translational fashion. This manuscript reports the first large preclinical model of CKD-HFpEF and metabolic derangements in naturally aged swine.</p><p><strong>Methods: </strong>CKD-HFpEF was induced in naturally aged (6-9 years old) and young (3-months old) pigs, followed for 14 weeks, and compared to normal young and old controls (n=5/group). Renal and cardiac hemodynamics were quantified in vivo by multidetector-CT, echocardiography, and pressure-volume relationship studies. Renal and cardiac microvascular (MV) architecture (3D-micro-CT) and morphometric analysis (staining) were investigated ex vivo.</p><p><strong>Results: </strong>Both young and old pigs developed CKD-HFpEF, but the renal, cardiac, and metabolic phenotype was accentuated in aging animals. Aging and CKD-HFpEF influenced fasting insulin levels and insulin resistance, GFR, cortical MV density, glomerulosclerosis, perivascular fibrosis, and tubular injury. Tubule-interstitial fibrosis and peritubular capillary density were influenced by aging, CKD-HFpEF, and their interaction (2-way ANOVA). Similarly, cardiac MV density, perivascular fibrosis, and myocardial remodeling were influenced by aging and CKD-HFpEF, and E/A by their interaction. Notably, renal and cardiac MV density correlated with renal and cardiac functional and structural changes.</p><p><strong>Conclusion: </strong>Our study establishes the first large animal model of aging CKD-HFpEF, allowing the investigation of age as a biological variable in cardio-renal and metabolic diseases. This new platform could foster new age-related research toward developing therapeutic interventions in CKD-HFpEF.</p>","PeriodicalId":7570,"journal":{"name":"American Journal of Nephrology","volume":" ","pages":"1-20"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Nephrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000543327","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Chronic kidney disease (CKD) and heart failure with preserved ejection fraction (HFpEF) are more prevalent in the elderly. There is a lack of large animal models that allow the study of the impact of age on CKD and HFpEF in a translational fashion. This manuscript reports the first large preclinical model of CKD-HFpEF and metabolic derangements in naturally aged swine.

Methods: CKD-HFpEF was induced in naturally aged (6-9 years old) and young (3-months old) pigs, followed for 14 weeks, and compared to normal young and old controls (n=5/group). Renal and cardiac hemodynamics were quantified in vivo by multidetector-CT, echocardiography, and pressure-volume relationship studies. Renal and cardiac microvascular (MV) architecture (3D-micro-CT) and morphometric analysis (staining) were investigated ex vivo.

Results: Both young and old pigs developed CKD-HFpEF, but the renal, cardiac, and metabolic phenotype was accentuated in aging animals. Aging and CKD-HFpEF influenced fasting insulin levels and insulin resistance, GFR, cortical MV density, glomerulosclerosis, perivascular fibrosis, and tubular injury. Tubule-interstitial fibrosis and peritubular capillary density were influenced by aging, CKD-HFpEF, and their interaction (2-way ANOVA). Similarly, cardiac MV density, perivascular fibrosis, and myocardial remodeling were influenced by aging and CKD-HFpEF, and E/A by their interaction. Notably, renal and cardiac MV density correlated with renal and cardiac functional and structural changes.

Conclusion: Our study establishes the first large animal model of aging CKD-HFpEF, allowing the investigation of age as a biological variable in cardio-renal and metabolic diseases. This new platform could foster new age-related research toward developing therapeutic interventions in CKD-HFpEF.

求助全文
约1分钟内获得全文 求助全文
来源期刊
American Journal of Nephrology
American Journal of Nephrology 医学-泌尿学与肾脏学
CiteScore
7.50
自引率
2.40%
发文量
74
审稿时长
4-8 weeks
期刊介绍: The ''American Journal of Nephrology'' is a peer-reviewed journal that focuses on timely topics in both basic science and clinical research. Papers are divided into several sections, including:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信