Man Chen;Hongtao Zhu;Yumin Peng;Xuan Wang;Xuefeng Zhang;Yijun Xiong;Lianfu Chen;Yikai Li;Bushi Zhao
{"title":"Decision-making Method for Pumped Storage Power Stations in the Electricity Energy and Frequency Regulation Markets","authors":"Man Chen;Hongtao Zhu;Yumin Peng;Xuan Wang;Xuefeng Zhang;Yijun Xiong;Lianfu Chen;Yikai Li;Bushi Zhao","doi":"10.23919/CJEE.2024.000084","DOIUrl":null,"url":null,"abstract":"With the establishment of “carbon peaking and carbon neutrality” goals in China, along with the development of new power systems and ongoing electricity market reforms, pumped-storage power stations (PSPSs) will increasingly play a significant role in power systems. Therefore, this study focuses on trading and bidding strategies for PSPSs in the electricity market. Firstly, a comprehensive framework for PSPSs participating in the electricity energy and frequency regulation (FR) ancillary service market is proposed. Subsequently, a two-layer trading model is developed to achieve joint clearing in the energy and frequency regulation markets. The upper-layer model aims to maximize the revenue of the power station by optimizing the bidding strategies using a Q-learning algorithm. The lower-layer model minimized the total electricity purchasing cost of the system. Finally, the proposed bi-level trading model is validated by studying an actual case in which data are obtained from a provincial power system in China. The results indicate that through this decision-making method, PSPSs can achieve higher economic revenue in the market, which will provide a reference for the planning and operation of PSPSs.","PeriodicalId":36428,"journal":{"name":"Chinese Journal of Electrical Engineering","volume":"10 4","pages":"60-72"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10596095","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electrical Engineering","FirstCategoryId":"1087","ListUrlMain":"https://ieeexplore.ieee.org/document/10596095/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
With the establishment of “carbon peaking and carbon neutrality” goals in China, along with the development of new power systems and ongoing electricity market reforms, pumped-storage power stations (PSPSs) will increasingly play a significant role in power systems. Therefore, this study focuses on trading and bidding strategies for PSPSs in the electricity market. Firstly, a comprehensive framework for PSPSs participating in the electricity energy and frequency regulation (FR) ancillary service market is proposed. Subsequently, a two-layer trading model is developed to achieve joint clearing in the energy and frequency regulation markets. The upper-layer model aims to maximize the revenue of the power station by optimizing the bidding strategies using a Q-learning algorithm. The lower-layer model minimized the total electricity purchasing cost of the system. Finally, the proposed bi-level trading model is validated by studying an actual case in which data are obtained from a provincial power system in China. The results indicate that through this decision-making method, PSPSs can achieve higher economic revenue in the market, which will provide a reference for the planning and operation of PSPSs.