Improving the Representation of Traffic States: A Novel Method for Link Selection of Urban Road Networks

Syed Muzammil Abbas Rizvi;Bernhard Friedrich
{"title":"Improving the Representation of Traffic States: A Novel Method for Link Selection of Urban Road Networks","authors":"Syed Muzammil Abbas Rizvi;Bernhard Friedrich","doi":"10.26599/JICV.2023.9210047","DOIUrl":null,"url":null,"abstract":"The macroscopic fundamental diagram (MFD) represents the aggregated traffic states of a road network. However, the uniqueness of an empirically estimated MFD cannot be guaranteed due to the problem of link selection. Instationarity and varying flow patterns make it difficult to select link flows that are representative of the traffic state in the whole network. This study developed a new method for selecting links equipped with loop detectors that represent a particular traffic state of a road network. The method utilizes a metric of heterogeneity characterizing the role of a network link over the time of day. The dispersion metric indicates the heterogeneity in traffic states and the dynamic role of each time interval. It ranks links based on the heterogeneity-weighted saturation level, with the highest-rank links representing the most homogeneous subset of sample links. This study compared classical and proposed dynamic weights using loop detector data from Zurich and London and a simulated network. Sample links were selected based on different saturation levels, and the saturation level was associated with the heterogeneity level to identify the links creating heterogeneity in the road network.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"7 4","pages":"266-278"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10823100","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent and Connected Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10823100/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The macroscopic fundamental diagram (MFD) represents the aggregated traffic states of a road network. However, the uniqueness of an empirically estimated MFD cannot be guaranteed due to the problem of link selection. Instationarity and varying flow patterns make it difficult to select link flows that are representative of the traffic state in the whole network. This study developed a new method for selecting links equipped with loop detectors that represent a particular traffic state of a road network. The method utilizes a metric of heterogeneity characterizing the role of a network link over the time of day. The dispersion metric indicates the heterogeneity in traffic states and the dynamic role of each time interval. It ranks links based on the heterogeneity-weighted saturation level, with the highest-rank links representing the most homogeneous subset of sample links. This study compared classical and proposed dynamic weights using loop detector data from Zurich and London and a simulated network. Sample links were selected based on different saturation levels, and the saturation level was associated with the heterogeneity level to identify the links creating heterogeneity in the road network.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信