{"title":"Improving the Representation of Traffic States: A Novel Method for Link Selection of Urban Road Networks","authors":"Syed Muzammil Abbas Rizvi;Bernhard Friedrich","doi":"10.26599/JICV.2023.9210047","DOIUrl":null,"url":null,"abstract":"The macroscopic fundamental diagram (MFD) represents the aggregated traffic states of a road network. However, the uniqueness of an empirically estimated MFD cannot be guaranteed due to the problem of link selection. Instationarity and varying flow patterns make it difficult to select link flows that are representative of the traffic state in the whole network. This study developed a new method for selecting links equipped with loop detectors that represent a particular traffic state of a road network. The method utilizes a metric of heterogeneity characterizing the role of a network link over the time of day. The dispersion metric indicates the heterogeneity in traffic states and the dynamic role of each time interval. It ranks links based on the heterogeneity-weighted saturation level, with the highest-rank links representing the most homogeneous subset of sample links. This study compared classical and proposed dynamic weights using loop detector data from Zurich and London and a simulated network. Sample links were selected based on different saturation levels, and the saturation level was associated with the heterogeneity level to identify the links creating heterogeneity in the road network.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"7 4","pages":"266-278"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10823100","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent and Connected Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10823100/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The macroscopic fundamental diagram (MFD) represents the aggregated traffic states of a road network. However, the uniqueness of an empirically estimated MFD cannot be guaranteed due to the problem of link selection. Instationarity and varying flow patterns make it difficult to select link flows that are representative of the traffic state in the whole network. This study developed a new method for selecting links equipped with loop detectors that represent a particular traffic state of a road network. The method utilizes a metric of heterogeneity characterizing the role of a network link over the time of day. The dispersion metric indicates the heterogeneity in traffic states and the dynamic role of each time interval. It ranks links based on the heterogeneity-weighted saturation level, with the highest-rank links representing the most homogeneous subset of sample links. This study compared classical and proposed dynamic weights using loop detector data from Zurich and London and a simulated network. Sample links were selected based on different saturation levels, and the saturation level was associated with the heterogeneity level to identify the links creating heterogeneity in the road network.