{"title":"A Reposition Algorithm for E-Hailing Based on Quantum Annealing and Intuitive Reasoning","authors":"Chao Wang;Yiyun Shi;Sumin Wang","doi":"10.23919/ICN.2024.0020","DOIUrl":null,"url":null,"abstract":"Currently, the challenge lies in the traditional intelligent algorithm's ability to effectively address the e-hailing repositioning issue. Accurately identifying the underlying characteristics in extensive traffic data within a limited timeframe is difficult, ultimately preventing the achievement of the most optimal solution. This paper suggests a hybrid computing architecture involving reinforcement learning and quantum annealing based on intuitive reasoning. Intuitive reasoning aims to enhance performance in scenarios with poor system robustness, complex tasks, and diverse goals. A deep learning model is constructed, trained to extract scene features, and combined with expert knowledge, then transformed into a quantum annealable form. The final strategy is obtained using a D-wave quantum computer with quantum tunneling effect, which helps in finding optimal solutions by jumping out of local suboptimal solutions. Based on 400 000 real data, four algorithms are compared: minimum-cost flow, sequential markov decision process, hot-dot strategy, and driver-prefer strategy. The average total revenue increases by about 10% and vehicle utilization by about 15% in various scenarios. In summary, the proposed architecture effectively solves the e-hailing reposition problem, offering new directions for robust artificial intelligence in big data decision problems.","PeriodicalId":100681,"journal":{"name":"Intelligent and Converged Networks","volume":"5 4","pages":"317-335"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10820898","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent and Converged Networks","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10820898/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, the challenge lies in the traditional intelligent algorithm's ability to effectively address the e-hailing repositioning issue. Accurately identifying the underlying characteristics in extensive traffic data within a limited timeframe is difficult, ultimately preventing the achievement of the most optimal solution. This paper suggests a hybrid computing architecture involving reinforcement learning and quantum annealing based on intuitive reasoning. Intuitive reasoning aims to enhance performance in scenarios with poor system robustness, complex tasks, and diverse goals. A deep learning model is constructed, trained to extract scene features, and combined with expert knowledge, then transformed into a quantum annealable form. The final strategy is obtained using a D-wave quantum computer with quantum tunneling effect, which helps in finding optimal solutions by jumping out of local suboptimal solutions. Based on 400 000 real data, four algorithms are compared: minimum-cost flow, sequential markov decision process, hot-dot strategy, and driver-prefer strategy. The average total revenue increases by about 10% and vehicle utilization by about 15% in various scenarios. In summary, the proposed architecture effectively solves the e-hailing reposition problem, offering new directions for robust artificial intelligence in big data decision problems.