Performance Evaluation of a Multi-input Interleaved Boost Converter with a Tuned Proportional-integral Controller

Q1 Engineering
Sucharita Pal;Dola Sinha;Mou Das Mahapatra;Saibal Majumder;Sovan Bhattacharya;Chandan Bandyopadhyay
{"title":"Performance Evaluation of a Multi-input Interleaved Boost Converter with a Tuned Proportional-integral Controller","authors":"Sucharita Pal;Dola Sinha;Mou Das Mahapatra;Saibal Majumder;Sovan Bhattacharya;Chandan Bandyopadhyay","doi":"10.23919/CJEE.2024.000094","DOIUrl":null,"url":null,"abstract":"The need for renewable energy access has led to the use of variable input converter approaches because renewable energy sources often generate electricity in an unpredictable manner. A high-performance multi-input boost converter is developed to provide the necessary output voltage and power while accommodating variations in input sources. This converter is specifically designed for the efficient usage of renewable energy. The proposed architecture integrates three separate unidirectional input power sources: photovoltaics, fuel cells, and storage system batteries. The architecture has five switches, and the implementation of each switch in the converter is achieved by applying the calculated duty ratios in various operating states. The closed-loop response of the converter with a proportional-integral (PI) controller-based switching system is examined by analyzing the Matlab-Simulink model utilizing a proportional-integral derivative (PID) tuner. The controller can deliver the desired output voltage of 400 V and an average power of 2 kW while exhibiting low switching transient effects. Therefore, the proposed multi-input interleaved boost converter demonstrates robust results for real-time applications by effectively harnessing renewable power sources.","PeriodicalId":36428,"journal":{"name":"Chinese Journal of Electrical Engineering","volume":"10 4","pages":"119-128"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10820899","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electrical Engineering","FirstCategoryId":"1087","ListUrlMain":"https://ieeexplore.ieee.org/document/10820899/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The need for renewable energy access has led to the use of variable input converter approaches because renewable energy sources often generate electricity in an unpredictable manner. A high-performance multi-input boost converter is developed to provide the necessary output voltage and power while accommodating variations in input sources. This converter is specifically designed for the efficient usage of renewable energy. The proposed architecture integrates three separate unidirectional input power sources: photovoltaics, fuel cells, and storage system batteries. The architecture has five switches, and the implementation of each switch in the converter is achieved by applying the calculated duty ratios in various operating states. The closed-loop response of the converter with a proportional-integral (PI) controller-based switching system is examined by analyzing the Matlab-Simulink model utilizing a proportional-integral derivative (PID) tuner. The controller can deliver the desired output voltage of 400 V and an average power of 2 kW while exhibiting low switching transient effects. Therefore, the proposed multi-input interleaved boost converter demonstrates robust results for real-time applications by effectively harnessing renewable power sources.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Electrical Engineering
Chinese Journal of Electrical Engineering Energy-Energy Engineering and Power Technology
CiteScore
7.80
自引率
0.00%
发文量
621
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信