Ritukesh Bharali , Frans P. van der Meer , Fredrik Larsson , Ralf Jänicke
{"title":"A time step-size computing arc-length method for the phase-field hydraulic fracture model","authors":"Ritukesh Bharali , Frans P. van der Meer , Fredrik Larsson , Ralf Jänicke","doi":"10.1016/j.cma.2024.117687","DOIUrl":null,"url":null,"abstract":"<div><div>The phase-field hydraulic fracture model entails a non-convex energy functional. This renders a poor convergence behaviour for monolithic solution techniques, such as the Newton–Raphson method. Consequently, researchers have adopted alternative solution techniques such as the staggered solution technique and the Newton–Raphson method with convexification via extrapolation of the phase-field. Both methods are robust. However, the former is computationally expensive and in the latter, the extrapolation itself is questionable w.r.t regularity in time. In this work, a novel dissipation-based arc-length method is proposed as a robust and computationally efficient monolithic solution technique for the phase-field hydraulic fracture model. Similar to brittle fracture in force driven mechanical problems, constant flux driven hydraulic fracture processes are also unstable. Furthermore, due to the constant flux loading in hydraulic fracturing problems, scaling of the external force is not possible. Instead, the time step-size is considered as the additional unknown, augmenting the arc-length constraint equation. The robustness and computational efficiency of the proposed arc-length method is demonstrated using numerical experiments, where comparisons are made with the staggered solver as well as the quasi-Newton BFGS method.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"436 ","pages":"Article 117687"},"PeriodicalIF":6.9000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524009411","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The phase-field hydraulic fracture model entails a non-convex energy functional. This renders a poor convergence behaviour for monolithic solution techniques, such as the Newton–Raphson method. Consequently, researchers have adopted alternative solution techniques such as the staggered solution technique and the Newton–Raphson method with convexification via extrapolation of the phase-field. Both methods are robust. However, the former is computationally expensive and in the latter, the extrapolation itself is questionable w.r.t regularity in time. In this work, a novel dissipation-based arc-length method is proposed as a robust and computationally efficient monolithic solution technique for the phase-field hydraulic fracture model. Similar to brittle fracture in force driven mechanical problems, constant flux driven hydraulic fracture processes are also unstable. Furthermore, due to the constant flux loading in hydraulic fracturing problems, scaling of the external force is not possible. Instead, the time step-size is considered as the additional unknown, augmenting the arc-length constraint equation. The robustness and computational efficiency of the proposed arc-length method is demonstrated using numerical experiments, where comparisons are made with the staggered solver as well as the quasi-Newton BFGS method.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.