{"title":"Non-overlapping, Schwarz-type domain decomposition method for physics and equality constrained artificial neural networks","authors":"Qifeng Hu, Shamsulhaq Basir, Inanc Senocak","doi":"10.1016/j.cma.2024.117706","DOIUrl":null,"url":null,"abstract":"<div><div>We present a non-overlapping, Schwarz-type domain decomposition method with a generalized interface condition, designed for physics-informed machine learning of partial differential equations (PDEs) in both forward and inverse contexts. Our approach employs physics and equality-constrained artificial neural networks (PECANN) within each subdomain. Unlike the original PECANN method, which relies solely on initial and boundary conditions to constrain PDEs, our method uses both boundary conditions and the governing PDE to constrain a unique interface loss function for each subdomain. This modification improves the learning of subdomain-specific interface parameters while reducing communication overhead by delaying information exchange between neighboring subdomains. To address the constrained optimization in each subdomain, we apply an augmented Lagrangian method with a conditionally adaptive update strategy, transforming the problem into an unconstrained dual optimization. A distinct advantage of our domain decomposition method is its ability to learn solutions to both Poisson’s and Helmholtz equations, even in cases with high-wavenumber and complex-valued solutions. Through numerical experiments with up to 64 subdomains, we demonstrate that our method consistently generalizes well as the number of subdomains increases.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"436 ","pages":"Article 117706"},"PeriodicalIF":6.9000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524009605","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present a non-overlapping, Schwarz-type domain decomposition method with a generalized interface condition, designed for physics-informed machine learning of partial differential equations (PDEs) in both forward and inverse contexts. Our approach employs physics and equality-constrained artificial neural networks (PECANN) within each subdomain. Unlike the original PECANN method, which relies solely on initial and boundary conditions to constrain PDEs, our method uses both boundary conditions and the governing PDE to constrain a unique interface loss function for each subdomain. This modification improves the learning of subdomain-specific interface parameters while reducing communication overhead by delaying information exchange between neighboring subdomains. To address the constrained optimization in each subdomain, we apply an augmented Lagrangian method with a conditionally adaptive update strategy, transforming the problem into an unconstrained dual optimization. A distinct advantage of our domain decomposition method is its ability to learn solutions to both Poisson’s and Helmholtz equations, even in cases with high-wavenumber and complex-valued solutions. Through numerical experiments with up to 64 subdomains, we demonstrate that our method consistently generalizes well as the number of subdomains increases.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.