The Number of Colorings of the Middle Layers of the Hamming Cube

IF 1 2区 数学 Q1 MATHEMATICS
Lina Li, Gweneth McKinley, Jinyoung Park
{"title":"The Number of Colorings of the Middle Layers of the Hamming Cube","authors":"Lina Li, Gweneth McKinley, Jinyoung Park","doi":"10.1007/s00493-024-00128-w","DOIUrl":null,"url":null,"abstract":"<p>For an odd integer <span>\\(n = 2d-1\\)</span>, let <span>\\({\\mathcal {B}}_d\\)</span> be the subgraph of the hypercube <span>\\(Q_n\\)</span> induced by the two largest layers. In this paper, we describe the typical structure of proper <i>q</i>-colorings of <span>\\(V({\\mathcal {B}}_d)\\)</span> and give asymptotics on the number of such colorings when <i>q</i> is an even number. The proofs use various tools including information theory (entropy), Sapozhenko’s graph container method and a recently developed method of Jenssen and Perkins that combines Sapozhenko’s graph container lemma with the cluster expansion for polymer models from statistical physics.\n</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"24 21 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00128-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For an odd integer \(n = 2d-1\), let \({\mathcal {B}}_d\) be the subgraph of the hypercube \(Q_n\) induced by the two largest layers. In this paper, we describe the typical structure of proper q-colorings of \(V({\mathcal {B}}_d)\) and give asymptotics on the number of such colorings when q is an even number. The proofs use various tools including information theory (entropy), Sapozhenko’s graph container method and a recently developed method of Jenssen and Perkins that combines Sapozhenko’s graph container lemma with the cluster expansion for polymer models from statistical physics.

汉明立方体中间层的着色数
对于一个奇整数\(n = 2d-1\),设\({\mathcal {B}}_d\)为由两个最大层引起的超立方体\(Q_n\)的子图。本文描述了\(V({\mathcal {B}}_d)\)的真q染色的典型结构,并给出了当q为偶数时真q染色个数的渐近性。证明使用了各种工具,包括信息论(熵),Sapozhenko的图容器方法以及Jenssen和Perkins最近开发的一种方法,该方法将Sapozhenko的图容器引理与统计物理中聚合物模型的簇展开相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信