ABCF1-K430-Lactylation promotes HCC malignant progression via transcriptional activation of HIF1 signaling pathway

IF 13.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Han Hong, Hexu Han, Lei Wang, Wen Cao, Minjie Hu, Jindong Li, Jiawei Wang, Yijin Yang, XiaoYong Xu, Gaochao Li, Zixiang Zhang, Changhe Zhang, Minhui Xu, Honggang Wang, Qiang Wang, Yin Yuan
{"title":"ABCF1-K430-Lactylation promotes HCC malignant progression via transcriptional activation of HIF1 signaling pathway","authors":"Han Hong, Hexu Han, Lei Wang, Wen Cao, Minjie Hu, Jindong Li, Jiawei Wang, Yijin Yang, XiaoYong Xu, Gaochao Li, Zixiang Zhang, Changhe Zhang, Minhui Xu, Honggang Wang, Qiang Wang, Yin Yuan","doi":"10.1038/s41418-024-01436-w","DOIUrl":null,"url":null,"abstract":"<p>Lysine lactylation plays critical roles in various diseases, including cancer. Our previous study showed that lactylation of non-histone ABCF1 may be involved in hepatocellular carcinoma (HCC) progression. In this study, we evaluated the prognostic value of ABCF1-K430la in HCC using immunohistochemical staining and performed amino acid point mutations, multi-omics crossover, and biochemical experiments to investigate its biological role and underlying mechanism. Additionally, we performed molecular docking on lactylation sites. ABCF1-K430la was highly expressed in HCC tissues and correlated with poor patient prognosis. Functionally, ABCF1-K430la promoted HCC growth and lung metastasis. Mechanistically, upon lactylation, E2 ubiquitin ligase activity of ABCF1 remained unaffected, and ABCF1 entered the nucleus, bound to the KDM3A promoter to upregulate its expression, and activated the KDM3A-H3K9me2-HIF1A axis, challenging the notion that ABCF1 functions exclusively in cytoplasmic protein translation. Notably, we discovered the existence of a lactate-ABCF1(430Kla)-HIF1A-lactate in HCC. A small-molecule drug screen targeting ABCF1-K430la revealed that tubuloside A inhibits ABCF1-K430la and suppresses HCC development. These findings demonstrate that elevated ABCF1-K430la expression promotes HCC development, suggesting it as a potential prognostic biomarker and therapeutic target for HCC.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"1 1","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death and Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41418-024-01436-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lysine lactylation plays critical roles in various diseases, including cancer. Our previous study showed that lactylation of non-histone ABCF1 may be involved in hepatocellular carcinoma (HCC) progression. In this study, we evaluated the prognostic value of ABCF1-K430la in HCC using immunohistochemical staining and performed amino acid point mutations, multi-omics crossover, and biochemical experiments to investigate its biological role and underlying mechanism. Additionally, we performed molecular docking on lactylation sites. ABCF1-K430la was highly expressed in HCC tissues and correlated with poor patient prognosis. Functionally, ABCF1-K430la promoted HCC growth and lung metastasis. Mechanistically, upon lactylation, E2 ubiquitin ligase activity of ABCF1 remained unaffected, and ABCF1 entered the nucleus, bound to the KDM3A promoter to upregulate its expression, and activated the KDM3A-H3K9me2-HIF1A axis, challenging the notion that ABCF1 functions exclusively in cytoplasmic protein translation. Notably, we discovered the existence of a lactate-ABCF1(430Kla)-HIF1A-lactate in HCC. A small-molecule drug screen targeting ABCF1-K430la revealed that tubuloside A inhibits ABCF1-K430la and suppresses HCC development. These findings demonstrate that elevated ABCF1-K430la expression promotes HCC development, suggesting it as a potential prognostic biomarker and therapeutic target for HCC.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death and Differentiation
Cell Death and Differentiation 生物-生化与分子生物学
CiteScore
24.70
自引率
1.60%
发文量
181
审稿时长
3 months
期刊介绍: Mission, vision and values of Cell Death & Differentiation: To devote itself to scientific excellence in the field of cell biology, molecular biology, and biochemistry of cell death and disease. To provide a unified forum for scientists and clinical researchers It is committed to the rapid publication of high quality original papers relating to these subjects, together with topical, usually solicited, reviews, meeting reports, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信