{"title":"NUFIP1 integrates amino acid sensing and DNA damage response to maintain the intestinal homeostasis","authors":"Hui Ming, Jing Tan, Si-Yi Cao, Cheng-Ping Yu, Yu-Ting Qi, Chao Wang, Lei Zhang, Ying Liu, Jian Yuan, Miao Yin, Qun-Ying Lei","doi":"10.1038/s42255-024-01179-5","DOIUrl":null,"url":null,"abstract":"<p>Nutrient availability strongly affects intestinal homeostasis. Here, we report that low-protein (LP) diets decrease amino acids levels, impair the DNA damage response (DDR), cause DNA damage and exacerbate inflammation in intestinal tissues of male mice with inflammatory bowel disease (IBD). Intriguingly, loss of nuclear fragile X mental retardation-interacting protein 1 (NUFIP1) contributes to the amino acid deficiency-induced impairment of the DDR in vivo and in vitro and induces necroptosis-related spontaneous enteritis. Mechanistically, phosphorylated NUFIP1 binds to replication protein A2 (RPA32) to recruit the ataxia telangiectasia and Rad3-related (ATR)–ATR-interacting protein (ATRIP) complex, triggering the DDR. Consistently, both reintroducing NUFIP1 but not its non-phospho-mutant and inhibition of necroptosis prevent bowel inflammation in male <i>Nufip1</i> conditional knockout mice. Intestinal inflammation and DNA damage in male mice with IBD can be mitigated by NUFIP1 overexpression. Moreover, NUFIP1 protein levels in the intestine of patients with IBD were found to be significantly decreased. Conclusively, our study uncovers that LP diets contribute to intestinal inflammation by hijacking NUFIP1–DDR signalling and thereby activating necroptosis.</p>","PeriodicalId":19038,"journal":{"name":"Nature metabolism","volume":"72 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s42255-024-01179-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Nutrient availability strongly affects intestinal homeostasis. Here, we report that low-protein (LP) diets decrease amino acids levels, impair the DNA damage response (DDR), cause DNA damage and exacerbate inflammation in intestinal tissues of male mice with inflammatory bowel disease (IBD). Intriguingly, loss of nuclear fragile X mental retardation-interacting protein 1 (NUFIP1) contributes to the amino acid deficiency-induced impairment of the DDR in vivo and in vitro and induces necroptosis-related spontaneous enteritis. Mechanistically, phosphorylated NUFIP1 binds to replication protein A2 (RPA32) to recruit the ataxia telangiectasia and Rad3-related (ATR)–ATR-interacting protein (ATRIP) complex, triggering the DDR. Consistently, both reintroducing NUFIP1 but not its non-phospho-mutant and inhibition of necroptosis prevent bowel inflammation in male Nufip1 conditional knockout mice. Intestinal inflammation and DNA damage in male mice with IBD can be mitigated by NUFIP1 overexpression. Moreover, NUFIP1 protein levels in the intestine of patients with IBD were found to be significantly decreased. Conclusively, our study uncovers that LP diets contribute to intestinal inflammation by hijacking NUFIP1–DDR signalling and thereby activating necroptosis.
期刊介绍:
Nature Metabolism is a peer-reviewed scientific journal that covers a broad range of topics in metabolism research. It aims to advance the understanding of metabolic and homeostatic processes at a cellular and physiological level. The journal publishes research from various fields, including fundamental cell biology, basic biomedical and translational research, and integrative physiology. It focuses on how cellular metabolism affects cellular function, the physiology and homeostasis of organs and tissues, and the regulation of organismal energy homeostasis. It also investigates the molecular pathophysiology of metabolic diseases such as diabetes and obesity, as well as their treatment. Nature Metabolism follows the standards of other Nature-branded journals, with a dedicated team of professional editors, rigorous peer-review process, high standards of copy-editing and production, swift publication, and editorial independence. The journal has a high impact factor, has a certain influence in the international area, and is deeply concerned and cited by the majority of scholars.