{"title":"Fully selective opening secure IBE from LWE","authors":"Dingding Jia, Haiyang Xue, Bao Li","doi":"10.1007/s10623-024-01560-1","DOIUrl":null,"url":null,"abstract":"<p>Selective opening security ensures that, when an adversary is given multiple ciphertexts and corrupts a subset of the senders (thereby obtaining the plaintexts and the senders’ randomness), the privacy of the remaining ciphertexts is still preserved. Previous selective opening secure IBE schemes encrypt messages bit-by-bit, or only achieve selective-id security. In this paper, we present the first adaptive-id, selective opening secure identity-based encryption (IBE) tightly from LWE. To achieve this, we introduce a new primitive called delegatable all-but-many lossy trapdoor functions (DABM-LTDF) and provide a generic construction that converts DABM-LTDF into an adaptive-id, selective opening secure IBE through a tight security reduction. Finally, we construct a concrete DABM-LTDF from the LWE assumption, resulting in the first adaptive-id, selective opening secure IBE from LWE.\n</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"17 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01560-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Selective opening security ensures that, when an adversary is given multiple ciphertexts and corrupts a subset of the senders (thereby obtaining the plaintexts and the senders’ randomness), the privacy of the remaining ciphertexts is still preserved. Previous selective opening secure IBE schemes encrypt messages bit-by-bit, or only achieve selective-id security. In this paper, we present the first adaptive-id, selective opening secure identity-based encryption (IBE) tightly from LWE. To achieve this, we introduce a new primitive called delegatable all-but-many lossy trapdoor functions (DABM-LTDF) and provide a generic construction that converts DABM-LTDF into an adaptive-id, selective opening secure IBE through a tight security reduction. Finally, we construct a concrete DABM-LTDF from the LWE assumption, resulting in the first adaptive-id, selective opening secure IBE from LWE.
期刊介绍:
Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines.
The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome.
The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas.
Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.