Uniacute Spherical Codes

IF 1 2区 数学 Q1 MATHEMATICS
Saba Lepsveridze, Aleksandre Saatashvili, Yufei Zhao
{"title":"Uniacute Spherical Codes","authors":"Saba Lepsveridze, Aleksandre Saatashvili, Yufei Zhao","doi":"10.1007/s00493-024-00125-z","DOIUrl":null,"url":null,"abstract":"<p>A spherical <i>L</i>-code, where <span>\\(L \\subseteq [-1,\\infty )\\)</span>, consists of unit vectors in <span>\\(\\mathbb {R}^d\\)</span> whose pairwise inner products are contained in <i>L</i>. Determining the maximum cardinality <span>\\(N_L(d)\\)</span> of an <i>L</i>-code in <span>\\(\\mathbb {R}^d\\)</span> is a fundamental question in discrete geometry and has been extensively investigated for various choices of <i>L</i>. Our understanding in high dimensions is generally quite poor. Equiangular lines, corresponding to <span>\\(L = \\{-\\alpha , \\alpha \\}\\)</span>, is a rare and notable solved case. Bukh studied an extension of equiangular lines and showed that <span>\\(N_L(d) = O_L(d)\\)</span> for <span>\\(L = [-1, -\\beta ] \\cup \\{\\alpha \\}\\)</span> with <span>\\(\\alpha ,\\beta &gt; 0\\)</span> (we call such <i>L</i>-codes “uniacute”), leaving open the question of determining the leading constant factor. Balla, Dräxler, Keevash, and Sudakov proved a “uniform bound” showing <span>\\(\\limsup _{d\\rightarrow \\infty } N_L(d)/d \\le 2p\\)</span> for <span>\\(L = [-1, -\\beta ] \\cup \\{\\alpha \\}\\)</span> and <span>\\(p = \\lfloor \\alpha /\\beta \\rfloor + 1\\)</span>. For which <span>\\((\\alpha ,\\beta )\\)</span> is this uniform bound tight? We completely answer this question. We develop a framework for studying uniacute codes, including a global structure theorem showing that the Gram matrix has an approximate <i>p</i>-block structure. We also formulate a notion of “modular codes,” which we conjecture to be optimal in high dimensions.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"375 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00125-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A spherical L-code, where \(L \subseteq [-1,\infty )\), consists of unit vectors in \(\mathbb {R}^d\) whose pairwise inner products are contained in L. Determining the maximum cardinality \(N_L(d)\) of an L-code in \(\mathbb {R}^d\) is a fundamental question in discrete geometry and has been extensively investigated for various choices of L. Our understanding in high dimensions is generally quite poor. Equiangular lines, corresponding to \(L = \{-\alpha , \alpha \}\), is a rare and notable solved case. Bukh studied an extension of equiangular lines and showed that \(N_L(d) = O_L(d)\) for \(L = [-1, -\beta ] \cup \{\alpha \}\) with \(\alpha ,\beta > 0\) (we call such L-codes “uniacute”), leaving open the question of determining the leading constant factor. Balla, Dräxler, Keevash, and Sudakov proved a “uniform bound” showing \(\limsup _{d\rightarrow \infty } N_L(d)/d \le 2p\) for \(L = [-1, -\beta ] \cup \{\alpha \}\) and \(p = \lfloor \alpha /\beta \rfloor + 1\). For which \((\alpha ,\beta )\) is this uniform bound tight? We completely answer this question. We develop a framework for studying uniacute codes, including a global structure theorem showing that the Gram matrix has an approximate p-block structure. We also formulate a notion of “modular codes,” which we conjecture to be optimal in high dimensions.

单锐角球码
球面l码,其中\(L \subseteq [-1,\infty )\)由\(\mathbb {R}^d\)中的单位向量组成,其成对内积包含在l中。确定\(\mathbb {R}^d\)中l码的最大基数\(N_L(d)\)是离散几何中的一个基本问题,并已广泛研究了l的各种选择。我们对高维的理解通常相当差。对应\(L = \{-\alpha , \alpha \}\)的等角线是一个罕见且值得注意的解决案例。Bukh研究了等角线的延伸,并用\(\alpha ,\beta > 0\)表示\(L = [-1, -\beta ] \cup \{\alpha \}\)的\(N_L(d) = O_L(d)\)(我们称这种l码为“单角”),留下确定主要常数因子的问题。巴拉,Dräxler,基瓦什和苏达科夫证明了一个“统一的边界”,即\(\limsup _{d\rightarrow \infty } N_L(d)/d \le 2p\)对应\(L = [-1, -\beta ] \cup \{\alpha \}\)和\(p = \lfloor \alpha /\beta \rfloor + 1\)。这身制服是为哪个\((\alpha ,\beta )\)绑紧的?我们完全回答了这个问题。我们开发了一个研究单锐码的框架,包括一个全局结构定理,表明Gram矩阵具有近似p块结构。我们还提出了“模块化代码”的概念,我们推测它在高维中是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信