Deiweson Souza-Monteiro, Walessa Alana Bragança Aragão, Yago Gecy de Sousa Né, Paulo Fernando Santos Mendes, Antonio Hernandes Chaves-Neto, Lílian Lund Amado, Rafael Rodrigues Lima
{"title":"Chronic stress triggers impairments of the redox status of salivary glands associated with different histological responses in rats.","authors":"Deiweson Souza-Monteiro, Walessa Alana Bragança Aragão, Yago Gecy de Sousa Né, Paulo Fernando Santos Mendes, Antonio Hernandes Chaves-Neto, Lílian Lund Amado, Rafael Rodrigues Lima","doi":"10.1080/10253890.2024.2447114","DOIUrl":null,"url":null,"abstract":"<p><p>Stress occurs as a reaction to mental and emotional pressure, anxiety, or scarring. Chronic stress is defined as constant submission to these moments. It can affect several body systems, increase blood pressure, and weaken immunity, thereby interfering with physiological health processes. Thus, this study aims to evaluate the effects of chronic stress on the redox status and histomorphological parameters of salivary glands. Thirty-two albino Wistar male rats were randomly divided into two groups: chronic stress and control. Chronically stressed animals were subjected to a restraint protocol by introducing them into a polyvinyl tube for 4 hours daily for 28 days, allowing immobilization of their movements. Subsequently, the animals were euthanized for further collection of the parotid and submandibular salivary glands. The redox state of the glands was evaluated using the antioxidant capacity against peroxyl radicals (ACAP) and thiobarbituric acid reactive substances (TBARS) assays. Histological analysis was performed through morphometry of the tissues stained with hematoxylin and eosin and histochemical through picrosirius red staining. Both the parotid and submandibular glands of stressed rats exhibited oxidative stress due to a decrease in ACAP and an increase in TBARS levels. However, the parotid glands are more susceptible to harmful changes in the tissue, such as an increase in the stromal area and in the collagen area fraction, decrease in the acinar area, and smaller size of the acinus and ducts. Our results suggest that chronic stress may cause harmful modulation of the redox state of the salivary glands, with different histological repercussions.</p>","PeriodicalId":51173,"journal":{"name":"Stress-The International Journal on the Biology of Stress","volume":"28 1","pages":"2447114"},"PeriodicalIF":2.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stress-The International Journal on the Biology of Stress","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/10253890.2024.2447114","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Stress occurs as a reaction to mental and emotional pressure, anxiety, or scarring. Chronic stress is defined as constant submission to these moments. It can affect several body systems, increase blood pressure, and weaken immunity, thereby interfering with physiological health processes. Thus, this study aims to evaluate the effects of chronic stress on the redox status and histomorphological parameters of salivary glands. Thirty-two albino Wistar male rats were randomly divided into two groups: chronic stress and control. Chronically stressed animals were subjected to a restraint protocol by introducing them into a polyvinyl tube for 4 hours daily for 28 days, allowing immobilization of their movements. Subsequently, the animals were euthanized for further collection of the parotid and submandibular salivary glands. The redox state of the glands was evaluated using the antioxidant capacity against peroxyl radicals (ACAP) and thiobarbituric acid reactive substances (TBARS) assays. Histological analysis was performed through morphometry of the tissues stained with hematoxylin and eosin and histochemical through picrosirius red staining. Both the parotid and submandibular glands of stressed rats exhibited oxidative stress due to a decrease in ACAP and an increase in TBARS levels. However, the parotid glands are more susceptible to harmful changes in the tissue, such as an increase in the stromal area and in the collagen area fraction, decrease in the acinar area, and smaller size of the acinus and ducts. Our results suggest that chronic stress may cause harmful modulation of the redox state of the salivary glands, with different histological repercussions.
期刊介绍:
The journal Stress aims to provide scientists involved in stress research with the possibility of reading a more integrated view of the field. Peer reviewed papers, invited reviews and short communications will deal with interdisciplinary aspects of stress in terms of: the mechanisms of stressful stimulation, including within and between individuals; the physiological and behavioural responses to stress, and their regulation, in both the short and long term; adaptive mechanisms, coping strategies and the pathological consequences of stress.
Stress will publish the latest developments in physiology, neurobiology, molecular biology, genetics research, immunology, and behavioural studies as they impact on the understanding of stress and its adverse consequences and their amelioration.
Specific approaches may include transgenic/knockout animals, developmental/programming studies, electrophysiology, histochemistry, neurochemistry, neuropharmacology, neuroanatomy, neuroimaging, endocrinology, autonomic physiology, immunology, chronic pain, ethological and other behavioural studies and clinical measures.