{"title":"Probing Spatial Proximities Between Protons of Collagen Protein in Native Bone Using 2D <sup>1</sup>H Multiple Quantum Experiments Under Fast MAS NMR.","authors":"Bijaylaxmi Patra, Vipin Agarwal, Yusuke Nishiyama, Neeraj Sinha","doi":"10.1002/mrc.5508","DOIUrl":null,"url":null,"abstract":"<p><p>In solid-state nuclear magnetic resonance (ssNMR) spectroscopy, fast magic angle spinning (MAS) is a potent technique that efficiently reduces line broadening and makes it possible to probe structural details of biological systems in high resolution. However, its utilization in studying complex heterogeneous biomaterials such as bone in their native state has been limited. The present study has demonstrated the feasibility of acquiring two-dimensional (2D) <sup>1</sup>H-<sup>1</sup>H correlation spectra for native bone using multiple-quantum/single-quantum correlation experiments (MQ/SQ) at fast MAS (70 kHz). This method uncovered distinct <sup>1</sup>H-<sup>1</sup>H dipolar coupling networks involving long-chain charged residues of collagen protein, highlighting their role in maintaining the stability of the collagen triple helix. Our study opens up new avenues for <sup>1</sup>H-detected multi-quantum-based experiments at fast MAS on native collagen-containing biological systems to explore their complex heterogeneous structural details more efficiently.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/mrc.5508","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In solid-state nuclear magnetic resonance (ssNMR) spectroscopy, fast magic angle spinning (MAS) is a potent technique that efficiently reduces line broadening and makes it possible to probe structural details of biological systems in high resolution. However, its utilization in studying complex heterogeneous biomaterials such as bone in their native state has been limited. The present study has demonstrated the feasibility of acquiring two-dimensional (2D) 1H-1H correlation spectra for native bone using multiple-quantum/single-quantum correlation experiments (MQ/SQ) at fast MAS (70 kHz). This method uncovered distinct 1H-1H dipolar coupling networks involving long-chain charged residues of collagen protein, highlighting their role in maintaining the stability of the collagen triple helix. Our study opens up new avenues for 1H-detected multi-quantum-based experiments at fast MAS on native collagen-containing biological systems to explore their complex heterogeneous structural details more efficiently.
期刊介绍:
MRC is devoted to the rapid publication of papers which are concerned with the development of magnetic resonance techniques, or in which the application of such techniques plays a pivotal part. Contributions from scientists working in all areas of NMR, ESR and NQR are invited, and papers describing applications in all branches of chemistry, structural biology and materials chemistry are published.
The journal is of particular interest not only to scientists working in academic research, but also those working in commercial organisations who need to keep up-to-date with the latest practical applications of magnetic resonance techniques.