{"title":"Computational Methods for Lineage Reconstruction.","authors":"Irepan Salvador-Martínez","doi":"10.1007/978-1-0716-4310-5_18","DOIUrl":null,"url":null,"abstract":"<p><p>The recent development of genetic lineage recorders, designed to register the genealogical history of cells using induced somatic mutations, has opened the possibility of reconstructing complete animal cell lineages. To reconstruct a cell lineage tree from a molecular recorder, it is crucial to use an appropriate reconstruction algorithm. Current approaches include algorithms specifically designed for cell lineage reconstruction and the repurposing of phylogenetic algorithms. These methods have, however, the same objective: to uncover the hierarchical relationships between cells and the sequence of cell divisions that have occurred during development. In this chapter, I will use the phylogenetic software FastTree to reconstruct a lineage tree, in a step-by-step manner, using data from a simulated CRISPR-Cas9 recorder. To ensure reproducibility, the code is presented as a Jupyter Notebook, available (together with the necessary input files) at https://github.com/irepansalvador/lineage_reconstruction_chapter .</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":"2886 ","pages":"355-373"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-0716-4310-5_18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
The recent development of genetic lineage recorders, designed to register the genealogical history of cells using induced somatic mutations, has opened the possibility of reconstructing complete animal cell lineages. To reconstruct a cell lineage tree from a molecular recorder, it is crucial to use an appropriate reconstruction algorithm. Current approaches include algorithms specifically designed for cell lineage reconstruction and the repurposing of phylogenetic algorithms. These methods have, however, the same objective: to uncover the hierarchical relationships between cells and the sequence of cell divisions that have occurred during development. In this chapter, I will use the phylogenetic software FastTree to reconstruct a lineage tree, in a step-by-step manner, using data from a simulated CRISPR-Cas9 recorder. To ensure reproducibility, the code is presented as a Jupyter Notebook, available (together with the necessary input files) at https://github.com/irepansalvador/lineage_reconstruction_chapter .
期刊介绍:
For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.