Untargeted metabolomics combined with lipidomics revealed the effects of myocardial infarction and exercise rehabilitation on blood circulation metabolism of patients based on liquid chromatography-mass spectrometry.
Na Wang, Huimin Li, Hao Wu, Zilin Xia, Dabing Ren, Yunmei Zhang, Yan Zhao, Hong Zhang, Ke Zhuang, Lunzhao Yi
{"title":"Untargeted metabolomics combined with lipidomics revealed the effects of myocardial infarction and exercise rehabilitation on blood circulation metabolism of patients based on liquid chromatography-mass spectrometry.","authors":"Na Wang, Huimin Li, Hao Wu, Zilin Xia, Dabing Ren, Yunmei Zhang, Yan Zhao, Hong Zhang, Ke Zhuang, Lunzhao Yi","doi":"10.1016/j.jpba.2024.116651","DOIUrl":null,"url":null,"abstract":"<p><p>Myocardial infarction (MI) is a major cause of death worldwide. Exercise rehabilitation (ER) is a powerful tool to improve life quality and prognosis of MI patients. Herein, we developed an untargeted metabolomics combined with lipidomics method to qualitatively and quantitatively detect metabolites in plasma. A total of 475 metabolites were annotated according to MS, MS/MS, and quantified by internal standard method. Moreover, medical statistical methods combined with chemometrics were used for metabolomics data mining and interpretation of clinical issues (matched Cohort 1, n = 90, Cohort 2, n = 6). The results illustrated that abnormal lipid metabolism is the most significant metabolic disorder for MI patients. And, three metabolic pathways, bile secretion, HIF-1 signaling pathway, and glutathione metabolism were uncovered in MI patients. Furthermore, glutamine, Phenylacetylglutamine (PAGln) and lysophosphatidylcholine (LPCs) were revealed as the essential biomarkers for ER of MI patients. Our findings revealed the metabolic landscape of MI and metabolic alterations after ER, will underlay potential applications of plasma metabolites in the detection of MI and optimization of ER program.</p>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":"255 ","pages":"116651"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jpba.2024.116651","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Myocardial infarction (MI) is a major cause of death worldwide. Exercise rehabilitation (ER) is a powerful tool to improve life quality and prognosis of MI patients. Herein, we developed an untargeted metabolomics combined with lipidomics method to qualitatively and quantitatively detect metabolites in plasma. A total of 475 metabolites were annotated according to MS, MS/MS, and quantified by internal standard method. Moreover, medical statistical methods combined with chemometrics were used for metabolomics data mining and interpretation of clinical issues (matched Cohort 1, n = 90, Cohort 2, n = 6). The results illustrated that abnormal lipid metabolism is the most significant metabolic disorder for MI patients. And, three metabolic pathways, bile secretion, HIF-1 signaling pathway, and glutathione metabolism were uncovered in MI patients. Furthermore, glutamine, Phenylacetylglutamine (PAGln) and lysophosphatidylcholine (LPCs) were revealed as the essential biomarkers for ER of MI patients. Our findings revealed the metabolic landscape of MI and metabolic alterations after ER, will underlay potential applications of plasma metabolites in the detection of MI and optimization of ER program.
期刊介绍:
This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome.
Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.