{"title":"Quorum sensing inhibits phage infection by regulating biofilm formation of <i>P. aeruginosa</i> PAO1.","authors":"Lei Cao, Jinhui Mi, Yile He, Guanhua Xuan, Jingxue Wang, Mengzhe Li, Yigang Tong","doi":"10.1128/jvi.01872-24","DOIUrl":null,"url":null,"abstract":"<p><p>Quorum sensing (QS) can regulate diverse critical phenotypic responses in <i>Pseudomonas. aeruginosa</i> (<i>P. aeruginosa</i>), enabling bacterial adaptation to external environmental fluctuations and optimizing population advantages. While there is emerging evidence of QS's involvement in influencing phage infections, our current understanding remains limited, necessitating further investigation. In this study, we isolated and characterized a novel phage designated as BUCT640 that infected <i>P. aeruginosa</i> PAO1. This phage belonged to class <i>Caudoviricetes</i>, genus <i>Bruynoghevirus</i>, with a podovirus morphology, and its adsorption was dependent on Psl polysaccharides, a repeating pentamer used to support biofilm structure. Leveraging phage BUCT640 as a model, we analyzed the role of both <i>rhl</i> QS and <i>las</i> QS in bacteria-phage interactions. Based on its distinctive plaque formation performances on different QS-related mutants, we investigated the variations of phage sensitivity to these strains and ultimately elucidated the mechanism underlying how QS inhibited phage infection to PAO1. Specifically, we unveiled that the <i>las</i> QS could inhibit phage adsorption, which is related to the thickness change caused by biofilm differentiation. Our findings suggest that the inhibition of QS may enhance phage infectivity, potentially facilitating advanced phage therapy combined with QS interference.</p><p><strong>Importance: </strong>Phage therapy is a powerful solution to combat drug-resistant pathogenic bacterial infections and has earned remarkable success in clinical treatment. However, recent insights underscore the potential impact of bacterial QS on phage infection dynamics. Here, we reported a unique phenomenon wherein QS, particularly in the <i>las</i> QS pathway, showed distinctive plaque formation behaviors by enlarging halos around plaques in mutant strains. In addition to this, we first elucidated the correlation between biofilm formation and phage infection. Notably, the <i>las</i> QS could inhibit phage adsorption, an effect closely related to biofilm thickness. Such research could be the evidence to steer bacterial QS toward favorable therapeutical outcomes. Therefore, our work can extend the comprehension of the interactions between bacteria and phages influenced by QS, thereby providing new perspectives on leveraging QS interference to enhance the efficacy of phage therapy for clinical applications.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0187224"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.01872-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Quorum sensing (QS) can regulate diverse critical phenotypic responses in Pseudomonas. aeruginosa (P. aeruginosa), enabling bacterial adaptation to external environmental fluctuations and optimizing population advantages. While there is emerging evidence of QS's involvement in influencing phage infections, our current understanding remains limited, necessitating further investigation. In this study, we isolated and characterized a novel phage designated as BUCT640 that infected P. aeruginosa PAO1. This phage belonged to class Caudoviricetes, genus Bruynoghevirus, with a podovirus morphology, and its adsorption was dependent on Psl polysaccharides, a repeating pentamer used to support biofilm structure. Leveraging phage BUCT640 as a model, we analyzed the role of both rhl QS and las QS in bacteria-phage interactions. Based on its distinctive plaque formation performances on different QS-related mutants, we investigated the variations of phage sensitivity to these strains and ultimately elucidated the mechanism underlying how QS inhibited phage infection to PAO1. Specifically, we unveiled that the las QS could inhibit phage adsorption, which is related to the thickness change caused by biofilm differentiation. Our findings suggest that the inhibition of QS may enhance phage infectivity, potentially facilitating advanced phage therapy combined with QS interference.
Importance: Phage therapy is a powerful solution to combat drug-resistant pathogenic bacterial infections and has earned remarkable success in clinical treatment. However, recent insights underscore the potential impact of bacterial QS on phage infection dynamics. Here, we reported a unique phenomenon wherein QS, particularly in the las QS pathway, showed distinctive plaque formation behaviors by enlarging halos around plaques in mutant strains. In addition to this, we first elucidated the correlation between biofilm formation and phage infection. Notably, the las QS could inhibit phage adsorption, an effect closely related to biofilm thickness. Such research could be the evidence to steer bacterial QS toward favorable therapeutical outcomes. Therefore, our work can extend the comprehension of the interactions between bacteria and phages influenced by QS, thereby providing new perspectives on leveraging QS interference to enhance the efficacy of phage therapy for clinical applications.
期刊介绍:
Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.