Persistence and/or Senescence: Not So Lasting at Last?

IF 12.5 1区 医学 Q1 ONCOLOGY
Clemens A Schmitt
{"title":"Persistence and/or Senescence: Not So Lasting at Last?","authors":"Clemens A Schmitt","doi":"10.1158/0008-5472.CAN-24-3744","DOIUrl":null,"url":null,"abstract":"<p><p>Therapy-exposed surviving cancer cells may have encountered profound epigenetic remodeling that renders these drug-tolerant persisters candidate drivers of particularly aggressive relapses. Typically presenting as slow-to-nongrowing cells, persisters are senescent or senescence-like cells. In this issue of Cancer Research, Ramponi and colleagues study mTOR/PI3K inhibitor-induced embryonic diapause-like arrest (DLA) as a model of persistence in lung cancer and melanoma cells and compare this persister condition with therapy-induced senescence in the same cells. The DLA phenotype recapitulated some but not all features attributed to senescent cells, lacking, for instance, an inflammatory secretome otherwise known as the senescence-associated secretory phenotype. A CRISPR dropout screen pointed to methyl group-providing one-carbon metabolism and further to H4K20me3-mediated repression of senescence-associated secretory phenotype-related IFN response genes selectively in DLA-like persister cells. Conversely, inhibition of H4K20-active KMT5B/C methyltransferases derepressed inflammatory programs and was toxic in DLA cells. These findings not only suggest exploitable vulnerabilities of DLA-like persister cells but also unveil general technical and conceptual challenges of cultured multipassage cell line-based persister studies. Collectively, the approach chosen and insights obtained will stimulate a productive scientific debate on senescence-like features and their reversibility across drug-tolerant persister cells. See related article by Ramponi et al., p. 32.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"85 1","pages":"7-9"},"PeriodicalIF":12.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.CAN-24-3744","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Therapy-exposed surviving cancer cells may have encountered profound epigenetic remodeling that renders these drug-tolerant persisters candidate drivers of particularly aggressive relapses. Typically presenting as slow-to-nongrowing cells, persisters are senescent or senescence-like cells. In this issue of Cancer Research, Ramponi and colleagues study mTOR/PI3K inhibitor-induced embryonic diapause-like arrest (DLA) as a model of persistence in lung cancer and melanoma cells and compare this persister condition with therapy-induced senescence in the same cells. The DLA phenotype recapitulated some but not all features attributed to senescent cells, lacking, for instance, an inflammatory secretome otherwise known as the senescence-associated secretory phenotype. A CRISPR dropout screen pointed to methyl group-providing one-carbon metabolism and further to H4K20me3-mediated repression of senescence-associated secretory phenotype-related IFN response genes selectively in DLA-like persister cells. Conversely, inhibition of H4K20-active KMT5B/C methyltransferases derepressed inflammatory programs and was toxic in DLA cells. These findings not only suggest exploitable vulnerabilities of DLA-like persister cells but also unveil general technical and conceptual challenges of cultured multipassage cell line-based persister studies. Collectively, the approach chosen and insights obtained will stimulate a productive scientific debate on senescence-like features and their reversibility across drug-tolerant persister cells. See related article by Ramponi et al., p. 32.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer research
Cancer research 医学-肿瘤学
CiteScore
16.10
自引率
0.90%
发文量
7677
审稿时长
2.5 months
期刊介绍: Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research. With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445. Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信