MICAL2 Promotes Pancreatic Cancer Growth and Metastasis.

IF 12.5 1区 医学 Q1 ONCOLOGY
Bharti Garg, Sohini Khan, Asimina S Courelli, Ponmathi Panneerpandian, Deepa Sheik Pran Babu, Evangeline S Mose, Kevin Christian Montecillo Gulay, Shweta Sharma, Divya Sood, Alexander T Wenzel, Alexei Martsinkovskiy, Nirakar Rajbhandari, Jay Patel, Dawn Jaquish, Edgar Esparza, Katelin Jaque, Neetu Aggarwal, Guillem Lambies, Anthony D'Ippolito, Kathryn Austgen, Brian Johnston, David A Orlando, Gun Ho Jang, Steven Gallinger, Elliot Goodfellow, Pnina Brodt, Cosimo Commisso, Pablo Tamayo, Jill P Mesirov, Hervé Tiriac, Andrew M Lowy
{"title":"MICAL2 Promotes Pancreatic Cancer Growth and Metastasis.","authors":"Bharti Garg, Sohini Khan, Asimina S Courelli, Ponmathi Panneerpandian, Deepa Sheik Pran Babu, Evangeline S Mose, Kevin Christian Montecillo Gulay, Shweta Sharma, Divya Sood, Alexander T Wenzel, Alexei Martsinkovskiy, Nirakar Rajbhandari, Jay Patel, Dawn Jaquish, Edgar Esparza, Katelin Jaque, Neetu Aggarwal, Guillem Lambies, Anthony D'Ippolito, Kathryn Austgen, Brian Johnston, David A Orlando, Gun Ho Jang, Steven Gallinger, Elliot Goodfellow, Pnina Brodt, Cosimo Commisso, Pablo Tamayo, Jill P Mesirov, Hervé Tiriac, Andrew M Lowy","doi":"10.1158/0008-5472.CAN-24-0744","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest solid cancers; thus, identifying more effective therapies is a major unmet need. In this study, we characterized the super enhancer (SE) landscape of human PDAC to identify drivers of the disease that might be targetable. This analysis revealed MICAL2 as a super enhancer-associated gene in human PDAC, which encodes the flavin monooxygenase MICAL2 that induces actin depolymerization and indirectly promotes SRF transcription by modulating the availability of serum response factor coactivators myocardin-related transcription factors (MRTF-A and MRTF-B). MICAL2 was overexpressed in PDAC, and high MICAL2 expression correlated with poor patient prognosis. Transcriptional analysis revealed that MICAL2 upregulates KRAS and EMT signaling pathways, contributing to tumor growth and metastasis. In loss and gain of function experiments in human and mouse PDAC cells, MICAL2 promoted both ERK1/2 and AKT activation. Consistent with its role in actin depolymerization and KRAS signaling, loss of MICAL2 also inhibited macropinocytosis. MICAL2, MRTF-A, and MRTF-B influenced PDAC cell proliferation and migration and promoted cell cycle progression in vitro. Importantly, MICAL2 supported in vivo tumor growth and metastasis. Interestingly, MRTF-B, but not MRTF-A, phenocopied MICAL2-driven phenotypes in vivo. This study highlights the multiple ways in which MICAL2 impacts PDAC biology and provides a foundation for future investigations into the potential of targeting MICAL2 for therapeutic intervention.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.CAN-24-0744","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest solid cancers; thus, identifying more effective therapies is a major unmet need. In this study, we characterized the super enhancer (SE) landscape of human PDAC to identify drivers of the disease that might be targetable. This analysis revealed MICAL2 as a super enhancer-associated gene in human PDAC, which encodes the flavin monooxygenase MICAL2 that induces actin depolymerization and indirectly promotes SRF transcription by modulating the availability of serum response factor coactivators myocardin-related transcription factors (MRTF-A and MRTF-B). MICAL2 was overexpressed in PDAC, and high MICAL2 expression correlated with poor patient prognosis. Transcriptional analysis revealed that MICAL2 upregulates KRAS and EMT signaling pathways, contributing to tumor growth and metastasis. In loss and gain of function experiments in human and mouse PDAC cells, MICAL2 promoted both ERK1/2 and AKT activation. Consistent with its role in actin depolymerization and KRAS signaling, loss of MICAL2 also inhibited macropinocytosis. MICAL2, MRTF-A, and MRTF-B influenced PDAC cell proliferation and migration and promoted cell cycle progression in vitro. Importantly, MICAL2 supported in vivo tumor growth and metastasis. Interestingly, MRTF-B, but not MRTF-A, phenocopied MICAL2-driven phenotypes in vivo. This study highlights the multiple ways in which MICAL2 impacts PDAC biology and provides a foundation for future investigations into the potential of targeting MICAL2 for therapeutic intervention.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer research
Cancer research 医学-肿瘤学
CiteScore
16.10
自引率
0.90%
发文量
7677
审稿时长
2.5 months
期刊介绍: Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research. With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445. Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信