Realization and research of self-healing technology of power communication equipment based on power safety and controllability

Q2 Energy
Danni Liu, Song Zhang, Shengda Wang, Mingwei Zhou, Ji Du
{"title":"Realization and research of self-healing technology of power communication equipment based on power safety and controllability","authors":"Danni Liu,&nbsp;Song Zhang,&nbsp;Shengda Wang,&nbsp;Mingwei Zhou,&nbsp;Ji Du","doi":"10.1186/s42162-024-00460-x","DOIUrl":null,"url":null,"abstract":"<div><p>The reliability of power communication networks is vital to ensure uninterrupted operation in power electronics. Self-healing techniques address this need by automating fault identification and recovery. However, existing methods struggle with dynamic challenges like voltage fluctuations, thermal overloads, and multidimensional sensor data, often leading to delays in fault recovery and reduced safety. This study aims to develop the Self Heal Power Safe Predictor (SHPSP) model to overcome the limitations of prior self-healing techniques. The primary objectives include improving fault prediction accuracy, enhancing recovery speed, and ensuring resilience under diverse and high-stress operational conditions. The SHPSP model employs an ensemble-based classification strategy within a majority voting framework, focusing on multidimensional sensor data such as voltage, temperature, and safety indicators. Feature selection is optimized using ensembled filter and wrapper techniques to prioritize critical parameters. The model is validated against conventional methods using metrics like accuracy, precision, recall, F1-score, and MCC. Experimental results demonstrate that the SHPSP model significantly outperforms previous approaches, achieving higher fault detection accuracy and faster recovery, particularly during voltage drops, power surges, and thermal stress. The SHPSP classifier obtained 91.4% accuracy, 88.2% precision, 89.5% recall, 89.8% F1-score, 81.0% MCC, and a 92.0% ROC-AUC curve. The SHPSP model ensures enhanced safety, dependability, and robustness for power electronics systems, marking a significant advancement in self-healing technology.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-024-00460-x","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-024-00460-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

The reliability of power communication networks is vital to ensure uninterrupted operation in power electronics. Self-healing techniques address this need by automating fault identification and recovery. However, existing methods struggle with dynamic challenges like voltage fluctuations, thermal overloads, and multidimensional sensor data, often leading to delays in fault recovery and reduced safety. This study aims to develop the Self Heal Power Safe Predictor (SHPSP) model to overcome the limitations of prior self-healing techniques. The primary objectives include improving fault prediction accuracy, enhancing recovery speed, and ensuring resilience under diverse and high-stress operational conditions. The SHPSP model employs an ensemble-based classification strategy within a majority voting framework, focusing on multidimensional sensor data such as voltage, temperature, and safety indicators. Feature selection is optimized using ensembled filter and wrapper techniques to prioritize critical parameters. The model is validated against conventional methods using metrics like accuracy, precision, recall, F1-score, and MCC. Experimental results demonstrate that the SHPSP model significantly outperforms previous approaches, achieving higher fault detection accuracy and faster recovery, particularly during voltage drops, power surges, and thermal stress. The SHPSP classifier obtained 91.4% accuracy, 88.2% precision, 89.5% recall, 89.8% F1-score, 81.0% MCC, and a 92.0% ROC-AUC curve. The SHPSP model ensures enhanced safety, dependability, and robustness for power electronics systems, marking a significant advancement in self-healing technology.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信