Shaping the future of medicine through diverse therapeutic applications of tetralin derivatives

IF 2.6 4区 医学 Q3 CHEMISTRY, MEDICINAL
Bhumi M. Shah, Radhika N. Kachhadiya
{"title":"Shaping the future of medicine through diverse therapeutic applications of tetralin derivatives","authors":"Bhumi M. Shah,&nbsp;Radhika N. Kachhadiya","doi":"10.1007/s00044-024-03331-y","DOIUrl":null,"url":null,"abstract":"<div><p>Tetralin is an ortho-fused bicyclic hydrocarbon notable for its odour of a mixture of benzene and menthol and high boiling point. Its low vapor pressure has limited its study by far-infrared spectroscopy but vibrational data have been obtained through alternative methods such as single vibronic level fluorescence (SVLF) and high-temperature vapor-phase Raman spectra. Tetralin is of more than chemical interest because it is part of several biologically active compounds. Interestingly, tetralin is a structural element of the anthracycline antibiotics that are clinically applied in cancer chemotherapy owing to their DNA-intercalating activity. The tetralin ring is crucial in sertraline, an antidepressant, and other clinically relevant compounds, including antifungal, anti-Parkinsonian, and anti-inflammatory activity. A comprehensive overview of tetralin derivatives with their diverse biological activities and therapeutic potentials has been discussed in the review. It also encompasses the synthetic methodology for the synthesis of tetralin and its derivatives including hydrogenation, and cyclization through metal catalysts, and visible light. In addition, a green chemical synthetic technique such as supercritical fluid technology was discussed, which improves the production of tetralin. Apart from that, metabolic pathways and catabolism of tetralin in biological systems and drug delivery systems of tetralin have been discussed. The review underlines the importance of tetralin derivatives in medicinal chemistry and has future developmental potential in therapeutic applications.</p></div>","PeriodicalId":699,"journal":{"name":"Medicinal Chemistry Research","volume":"34 1","pages":"86 - 113"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00044-024-03331-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tetralin is an ortho-fused bicyclic hydrocarbon notable for its odour of a mixture of benzene and menthol and high boiling point. Its low vapor pressure has limited its study by far-infrared spectroscopy but vibrational data have been obtained through alternative methods such as single vibronic level fluorescence (SVLF) and high-temperature vapor-phase Raman spectra. Tetralin is of more than chemical interest because it is part of several biologically active compounds. Interestingly, tetralin is a structural element of the anthracycline antibiotics that are clinically applied in cancer chemotherapy owing to their DNA-intercalating activity. The tetralin ring is crucial in sertraline, an antidepressant, and other clinically relevant compounds, including antifungal, anti-Parkinsonian, and anti-inflammatory activity. A comprehensive overview of tetralin derivatives with their diverse biological activities and therapeutic potentials has been discussed in the review. It also encompasses the synthetic methodology for the synthesis of tetralin and its derivatives including hydrogenation, and cyclization through metal catalysts, and visible light. In addition, a green chemical synthetic technique such as supercritical fluid technology was discussed, which improves the production of tetralin. Apart from that, metabolic pathways and catabolism of tetralin in biological systems and drug delivery systems of tetralin have been discussed. The review underlines the importance of tetralin derivatives in medicinal chemistry and has future developmental potential in therapeutic applications.

通过四氢化萘衍生物的多种治疗应用,塑造医学的未来
四氢化萘是一种邻熔双环烃,以其苯和薄荷醇混合物的气味和高沸点而闻名。它的低蒸气压限制了它的远红外光谱研究,但振动数据可以通过其他方法获得,如单振动能级荧光(SVLF)和高温气相拉曼光谱。四氢化萘不仅仅是化学上的兴趣,因为它是几种生物活性化合物的一部分。有趣的是,四环素是蒽环类抗生素的一种结构成分,由于其dna插入活性,临床上应用于癌症化疗。四氢化萘环在舍曲林(一种抗抑郁药)和其他临床相关化合物中起着至关重要的作用,包括抗真菌、抗帕金森病和抗炎活性。本文综述了四萘林衍生物及其多种生物活性和治疗潜力。它还包括四氢化萘及其衍生物的合成方法,包括氢化,通过金属催化剂和可见光的环化。此外,还讨论了超临界流体技术等绿色化学合成技术,提高了四氢化萘的产量。此外,还讨论了四氢萘林在生物系统中的代谢途径和分解代谢以及四氢萘林的给药系统。综述强调了四萘林衍生物在药物化学中的重要性和在治疗应用方面的发展潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medicinal Chemistry Research
Medicinal Chemistry Research 医学-医药化学
CiteScore
4.70
自引率
3.80%
发文量
162
审稿时长
5.0 months
期刊介绍: Medicinal Chemistry Research (MCRE) publishes papers on a wide range of topics, favoring research with significant, new, and up-to-date information. Although the journal has a demanding peer review process, MCRE still boasts rapid publication, due in part, to the length of the submissions. The journal publishes significant research on various topics, many of which emphasize the structure-activity relationships of molecular biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信