Complexity Bounds for Deterministic Partially Observed Markov Decision Processes

IF 4.4 3区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Cyrille Vessaire, Pierre Carpentier, Jean-Philippe Chancelier, Michel De Lara, Alejandro Rodríguez-Martínez
{"title":"Complexity Bounds for Deterministic Partially Observed Markov Decision Processes","authors":"Cyrille Vessaire,&nbsp;Pierre Carpentier,&nbsp;Jean-Philippe Chancelier,&nbsp;Michel De Lara,&nbsp;Alejandro Rodríguez-Martínez","doi":"10.1007/s10479-024-06282-0","DOIUrl":null,"url":null,"abstract":"<div><p>Partially Observed Markov Decision Processes (<span>Pomdp</span>) share the structure of Markov Decision Processs (<span>Mdp</span>) — with stages, states, actions, probability transitions, rewards — but for the notion of solutions. In a <span>Pomdp</span>, observation mappings provide partial and/or imperfect knowledge of the state, and a policy maps observations (and not states like in a <span>Mdp</span>) towards actions. Theroretically, a <span>Pomdp</span> can be solved by Dynamic Programming (DP), but with an information state made of probability distributions over the original state, hence DP suffers from the curse of dimensionality, even in the finite case. This is why, authors like (Littman, M. L. 1996). Algorithms for Sequential Decision Making. PhD thesis, Brown University) and (Bonet, B. 2009). Deterministic POMDPs revisited. In <i>Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI ’09</i> (pp. 59-66). Arlington, Virginia, USA. AUAI Press) have studied the subclass of so-called Deterministic Partially Observed Markov Decision Processes (<span>Det-Pomdp</span>), where transitions and observations mappings are deterministic. In this paper, we improve on Littman’s complexity bounds. We then introduce and study a more restricted class, Separated <span>Det-Pomdp</span>s, and give some new complexity bounds for this class.</p></div>","PeriodicalId":8215,"journal":{"name":"Annals of Operations Research","volume":"344 1","pages":"345 - 382"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Operations Research","FirstCategoryId":"91","ListUrlMain":"https://link.springer.com/article/10.1007/s10479-024-06282-0","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Partially Observed Markov Decision Processes (Pomdp) share the structure of Markov Decision Processs (Mdp) — with stages, states, actions, probability transitions, rewards — but for the notion of solutions. In a Pomdp, observation mappings provide partial and/or imperfect knowledge of the state, and a policy maps observations (and not states like in a Mdp) towards actions. Theroretically, a Pomdp can be solved by Dynamic Programming (DP), but with an information state made of probability distributions over the original state, hence DP suffers from the curse of dimensionality, even in the finite case. This is why, authors like (Littman, M. L. 1996). Algorithms for Sequential Decision Making. PhD thesis, Brown University) and (Bonet, B. 2009). Deterministic POMDPs revisited. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI ’09 (pp. 59-66). Arlington, Virginia, USA. AUAI Press) have studied the subclass of so-called Deterministic Partially Observed Markov Decision Processes (Det-Pomdp), where transitions and observations mappings are deterministic. In this paper, we improve on Littman’s complexity bounds. We then introduce and study a more restricted class, Separated Det-Pomdps, and give some new complexity bounds for this class.

Abstract Image

确定性部分可观察马尔可夫决策过程的复杂度界
部分可观察马尔可夫决策过程(Pomdp)共享马尔可夫决策过程(Mdp)的结构——有阶段、状态、行动、概率转移、奖励——但对于解决方案的概念。在Pomdp中,观察映射提供了状态的部分和/或不完善的知识,策略将观察(而不是Mdp中的状态)映射到操作。理论上,动态规划(DP)可以解决Pomdp问题,但其信息状态是由原始状态上的概率分布构成的,因此即使在有限情况下,动态规划也会受到维数诅咒的影响。这就是为什么,作者喜欢(Littman, m.l. 1996)。顺序决策算法。博士论文,布朗大学)和(Bonet, B. 2009)。重新审视确定性的pomdp。第25届人工智能不确定性会议论文集,UAI ' 09(第59-66页)。阿灵顿,弗吉尼亚州,美国。AUAI出版社)研究了所谓的确定性部分可观察马尔可夫决策过程(Det-Pomdp)的子类,其中转换和观察映射是确定性的。在本文中,我们改进了Littman的复杂度界。然后,我们引入并研究了一个更受限制的类——分离的dep - pomdps,并给出了该类的一些新的复杂度界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Operations Research
Annals of Operations Research 管理科学-运筹学与管理科学
CiteScore
7.90
自引率
16.70%
发文量
596
审稿时长
8.4 months
期刊介绍: The Annals of Operations Research publishes peer-reviewed original articles dealing with key aspects of operations research, including theory, practice, and computation. The journal publishes full-length research articles, short notes, expositions and surveys, reports on computational studies, and case studies that present new and innovative practical applications. In addition to regular issues, the journal publishes periodic special volumes that focus on defined fields of operations research, ranging from the highly theoretical to the algorithmic and the applied. These volumes have one or more Guest Editors who are responsible for collecting the papers and overseeing the refereeing process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信