Wireframe DNA origami nanostructure with the controlled opening of edges

IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL
Maryam Mogheiseh and Reza Hasanzadeh Ghasemi
{"title":"Wireframe DNA origami nanostructure with the controlled opening of edges","authors":"Maryam Mogheiseh and Reza Hasanzadeh Ghasemi","doi":"10.1039/D4ME00144C","DOIUrl":null,"url":null,"abstract":"<p >Wireframe DNA origami nanostructures present significant potential for a variety of applications in nanotechnology, primarily due to their straightforward design and construction processes. The precise control afforded by these nanostructures renders them exceptionally suitable for executing specific tasks. This study introduces innovative designs by altering short strands (staples) in wireframe DNA origami nanostructures, leading to different behaviors at human body temperature. These behaviors include the selective opening of certain parts of the structure while keeping other parts closed. Our research demonstrates that wireframe DNA origami nanostructures, with their numerous edges, can be engineered to allow selective opening of specific edges. This capability facilitates precise control over the structural configuration, enabling designers to customize these nanostructures to fulfill specific functional requirements. Consequently, the use of these controllable nanostructures opens up new avenues for developing nanorobots. By leveraging the unique properties of wireframe DNA origami, this study paves the way for advancements in the field of nanotechnology, particularly in the creation of versatile and adaptable nanoscale devices.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 1","pages":" 68-80"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/me/d4me00144c","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Wireframe DNA origami nanostructures present significant potential for a variety of applications in nanotechnology, primarily due to their straightforward design and construction processes. The precise control afforded by these nanostructures renders them exceptionally suitable for executing specific tasks. This study introduces innovative designs by altering short strands (staples) in wireframe DNA origami nanostructures, leading to different behaviors at human body temperature. These behaviors include the selective opening of certain parts of the structure while keeping other parts closed. Our research demonstrates that wireframe DNA origami nanostructures, with their numerous edges, can be engineered to allow selective opening of specific edges. This capability facilitates precise control over the structural configuration, enabling designers to customize these nanostructures to fulfill specific functional requirements. Consequently, the use of these controllable nanostructures opens up new avenues for developing nanorobots. By leveraging the unique properties of wireframe DNA origami, this study paves the way for advancements in the field of nanotechnology, particularly in the creation of versatile and adaptable nanoscale devices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Systems Design & Engineering
Molecular Systems Design & Engineering Engineering-Biomedical Engineering
CiteScore
6.40
自引率
2.80%
发文量
144
期刊介绍: Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信