FCLA-DT: Federated Continual Learning with Authentication for Distributed Digital Twin-Based Industrial IoT

Yingjie Xia;Xuejiao Liu;Yunxiao Zhao;Yun Wang
{"title":"FCLA-DT: Federated Continual Learning with Authentication for Distributed Digital Twin-Based Industrial IoT","authors":"Yingjie Xia;Xuejiao Liu;Yunxiao Zhao;Yun Wang","doi":"10.23919/JCIN.2024.10820161","DOIUrl":null,"url":null,"abstract":"Digital twin (DT) technology is currently pervasive in industrial Internet of things (IoT) applications, notably in predictive maintenance scenarios. Prevailing digital twin-based predictive maintenance methodologies are constrained by a narrow focus on singular physical modeling paradigms, impeding comprehensive analysis of diverse factory data at scale. This paper introduces an improved method, federated continual learning with authentication for distributed digital twin-based industrial IoT (FCLA-DT). This decentralized strategy ensures the continual learning capability vital for adaptive and real-time decision-making in complex industrial predictive maintenance systems. An authentication scheme based on group signature is introduced to enable the verification of digital twin identities during inter-twin collaborations, avoiding unauthorized access and potential model theft. Security analysis shows that FCLA-DT can enable numerous nodes to collaborate learning without compromising individual twin privacy, thereby ensuring group authentication in the cooperative distributed industrial IoT. Performance analysis shows that FCLA-DT outperforms traditional federated learning methods with over 95% fault diagnosis accuracy and ensures the privacy and authentication of digital twins in multi-client task learning.","PeriodicalId":100766,"journal":{"name":"Journal of Communications and Information Networks","volume":"9 4","pages":"362-373"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications and Information Networks","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10820161/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Digital twin (DT) technology is currently pervasive in industrial Internet of things (IoT) applications, notably in predictive maintenance scenarios. Prevailing digital twin-based predictive maintenance methodologies are constrained by a narrow focus on singular physical modeling paradigms, impeding comprehensive analysis of diverse factory data at scale. This paper introduces an improved method, federated continual learning with authentication for distributed digital twin-based industrial IoT (FCLA-DT). This decentralized strategy ensures the continual learning capability vital for adaptive and real-time decision-making in complex industrial predictive maintenance systems. An authentication scheme based on group signature is introduced to enable the verification of digital twin identities during inter-twin collaborations, avoiding unauthorized access and potential model theft. Security analysis shows that FCLA-DT can enable numerous nodes to collaborate learning without compromising individual twin privacy, thereby ensuring group authentication in the cooperative distributed industrial IoT. Performance analysis shows that FCLA-DT outperforms traditional federated learning methods with over 95% fault diagnosis accuracy and ensures the privacy and authentication of digital twins in multi-client task learning.
FCLA-DT:基于分布式数字孪生的工业物联网联邦持续学习与认证
数字孪生(DT)技术目前在工业物联网(IoT)应用中非常普遍,特别是在预测性维护场景中。流行的基于数字孪生的预测性维护方法受到单一物理建模范式的狭隘关注的限制,阻碍了对大规模不同工厂数据的全面分析。本文介绍了一种基于分布式数字孪生的工业物联网(FCLA-DT)的改进方法——联合持续学习与认证。这种分散的策略确保了持续的学习能力,这对于复杂的工业预测性维护系统的自适应和实时决策至关重要。提出了一种基于组签名的数字孪生身份验证方案,实现了数字孪生协作过程中的身份验证,避免了未经授权的访问和潜在的模型被盗。安全性分析表明,FCLA-DT可以使多个节点在不损害单个孪生隐私的情况下进行协作学习,从而确保协作分布式工业物联网中的组认证。性能分析表明,FCLA-DT优于传统的联邦学习方法,故障诊断准确率超过95%,并保证了数字孪生在多客户端任务学习中的隐私性和身份验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信