Evaluation and Analysis of Gassing Material Performance Used in Low-Voltage Circuit Breakers

IF 3.8 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Weidong Cao;Chaojie Luo;Qian Wang;Tao Zhuang;Yanfeng Zhang;Xingwen Li
{"title":"Evaluation and Analysis of Gassing Material Performance Used in Low-Voltage Circuit Breakers","authors":"Weidong Cao;Chaojie Luo;Qian Wang;Tao Zhuang;Yanfeng Zhang;Xingwen Li","doi":"10.1109/TPWRD.2024.3516725","DOIUrl":null,"url":null,"abstract":"This paper introduces an evaluation method for gassing materials used in low-voltage circuit breakers and identifies key factors affecting arc characteristics. Firstly, sixteen types of gassing materials were prepared using PA6 and PA66 as matrices, with various flame retardants and reinforcements as additives. Breaking experiments were conducted in both low-frequency and direct-current circuits to assess these materials in terms of arcing and post-arc phenomena. Material characterization techniques were then employed to analyze the optical absorption and pyrolysis properties of the selected gassing materials. Finally, based on the physical mechanisms of interaction between arcs and gassing materials, a detailed mechanistic analysis and theoretical explanation were provided, integrating material characterization and microscopic modeling. The results suggest that the proposed evaluation method effectively identifies one or two materials with optimal overall performance from the 16 types tested. Superior materials are characterized by organic molecular fillers and high radiation absorption, which enhance arc energy absorption and increase ablation gas generation. Hydrogen-containing gases (e.g., H<sub>2</sub>, CH<sub>4</sub>, H<sub>2</sub>O) and gases with high dissociation energy (e.g., CO<sub>2</sub>, N<sub>2</sub>) are crucial for arc extinction. This paper also highlights two major challenges facing current gassing materials, suggesting areas for further research.","PeriodicalId":13498,"journal":{"name":"IEEE Transactions on Power Delivery","volume":"40 2","pages":"728-738"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Power Delivery","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10819983/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces an evaluation method for gassing materials used in low-voltage circuit breakers and identifies key factors affecting arc characteristics. Firstly, sixteen types of gassing materials were prepared using PA6 and PA66 as matrices, with various flame retardants and reinforcements as additives. Breaking experiments were conducted in both low-frequency and direct-current circuits to assess these materials in terms of arcing and post-arc phenomena. Material characterization techniques were then employed to analyze the optical absorption and pyrolysis properties of the selected gassing materials. Finally, based on the physical mechanisms of interaction between arcs and gassing materials, a detailed mechanistic analysis and theoretical explanation were provided, integrating material characterization and microscopic modeling. The results suggest that the proposed evaluation method effectively identifies one or two materials with optimal overall performance from the 16 types tested. Superior materials are characterized by organic molecular fillers and high radiation absorption, which enhance arc energy absorption and increase ablation gas generation. Hydrogen-containing gases (e.g., H2, CH4, H2O) and gases with high dissociation energy (e.g., CO2, N2) are crucial for arc extinction. This paper also highlights two major challenges facing current gassing materials, suggesting areas for further research.
低压断路器用气体材料性能评价与分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Power Delivery
IEEE Transactions on Power Delivery 工程技术-工程:电子与电气
CiteScore
9.00
自引率
13.60%
发文量
513
审稿时长
6 months
期刊介绍: The scope of the Society embraces planning, research, development, design, application, construction, installation and operation of apparatus, equipment, structures, materials and systems for the safe, reliable and economic generation, transmission, distribution, conversion, measurement and control of electric energy. It includes the developing of engineering standards, the providing of information and instruction to the public and to legislators, as well as technical scientific, literary, educational and other activities that contribute to the electric power discipline or utilize the techniques or products within this discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信