Neural Kalman Filters for Acoustic Echo Cancellation: Comparison of deep neural network-based extensions [Special Issue On Model-Based and Data-Driven Audio Signal Processing]
IF 9.4 1区 工程技术Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ernst Seidel;Gerald Enzner;Pejman Mowlaee;Tim Fingscheidt
{"title":"Neural Kalman Filters for Acoustic Echo Cancellation: Comparison of deep neural network-based extensions [Special Issue On Model-Based and Data-Driven Audio Signal Processing]","authors":"Ernst Seidel;Gerald Enzner;Pejman Mowlaee;Tim Fingscheidt","doi":"10.1109/MSP.2024.3449557","DOIUrl":null,"url":null,"abstract":"Kalman filtering is a powerful approach to adaptive filtering for various problems in signal processing. The frequency-domain adaptive Kalman filter (FDKF), based on the concept of the acoustic state space, provides a unifying solution to the adaptive filter update and the related stepsize control. It was conceived for the problem of acoustic echo cancellation and, as such, is frequently applied in hands-free systems. This article motivates and briefly recapitulates the linear FDKF and investigates how it can be further supported by deep neural networks (DNNs) in various ways, specifically to overcome the challenges and limitations related to the usually required estimation of process and observation noise covariances for the Kalman filter. While the mere FDKF comes with very low computational complexity, its neural Kalman filter variants may deliver faster (re)convergence, better echo cancellation, and even exceed the FDKF in its excellent double-talk near-end speech preservation both under linear and nonlinear loudspeaker conditions. To provide a synopsis of the state of the art, this article contributes a comparison of a range of DNN-based extensions of FDKF in the same training framework and using the same data.","PeriodicalId":13246,"journal":{"name":"IEEE Signal Processing Magazine","volume":"41 6","pages":"24-38"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Magazine","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10819702/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Kalman filtering is a powerful approach to adaptive filtering for various problems in signal processing. The frequency-domain adaptive Kalman filter (FDKF), based on the concept of the acoustic state space, provides a unifying solution to the adaptive filter update and the related stepsize control. It was conceived for the problem of acoustic echo cancellation and, as such, is frequently applied in hands-free systems. This article motivates and briefly recapitulates the linear FDKF and investigates how it can be further supported by deep neural networks (DNNs) in various ways, specifically to overcome the challenges and limitations related to the usually required estimation of process and observation noise covariances for the Kalman filter. While the mere FDKF comes with very low computational complexity, its neural Kalman filter variants may deliver faster (re)convergence, better echo cancellation, and even exceed the FDKF in its excellent double-talk near-end speech preservation both under linear and nonlinear loudspeaker conditions. To provide a synopsis of the state of the art, this article contributes a comparison of a range of DNN-based extensions of FDKF in the same training framework and using the same data.
期刊介绍:
EEE Signal Processing Magazine is a publication that focuses on signal processing research and applications. It publishes tutorial-style articles, columns, and forums that cover a wide range of topics related to signal processing. The magazine aims to provide the research, educational, and professional communities with the latest technical developments, issues, and events in the field. It serves as the main communication platform for the society, addressing important matters that concern all members.