M Mendez, F Castillo, L Probyn, S Kras, P N Tyrrell
{"title":"Leveraging domain knowledge for synthetic ultrasound image generation: a novel approach to rare disease AI detection.","authors":"M Mendez, F Castillo, L Probyn, S Kras, P N Tyrrell","doi":"10.1007/s11548-024-03309-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study explores the use of deep generative models to create synthetic ultrasound images for the detection of hemarthrosis in hemophilia patients. Addressing the challenge of sparse datasets in rare disease diagnostics, the study aims to enhance AI model robustness and accuracy through the integration of domain knowledge into the synthetic image generation process.</p><p><strong>Methods: </strong>The study employed two ultrasound datasets: a base dataset (Db) of knee recess distension images from non-hemophiliac patients and a target dataset (Dt) of hemarthrosis images from hemophiliac patients. The synthetic generation framework included a content generator (Gc) trained on Db and a context generator (Gs) to adapt these images to match Dt's context. This approach generated a synthetic target dataset (Ds), primed for AI training in rare disease research. The assessment of synthetic image generation involved expert evaluations, statistical analysis, and the use of domain-invariant perceptual distance and Fréchet inception distance for quality measurement.</p><p><strong>Results: </strong>Expert evaluation revealed that images produced by our synthetic generation framework were comparable to real ones, with no significant difference in overall quality or anatomical accuracy. Additionally, the use of synthetic data in training convolutional neural networks demonstrated robustness in detecting hemarthrosis, especially with limited sample sizes.</p><p><strong>Conclusion: </strong>This study presents a novel approach for generating synthetic ultrasound images for rare disease detection, such as hemarthrosis in hemophiliac knees. By leveraging deep generative models and integrating domain knowledge, the proposed framework successfully addresses the limitations of sparse datasets and enhances AI model training and robustness. The synthetic images produced are of high quality and contribute significantly to AI-driven diagnostics in rare diseases, highlighting the potential of synthetic data in medical imaging.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":"415-431"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-024-03309-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study explores the use of deep generative models to create synthetic ultrasound images for the detection of hemarthrosis in hemophilia patients. Addressing the challenge of sparse datasets in rare disease diagnostics, the study aims to enhance AI model robustness and accuracy through the integration of domain knowledge into the synthetic image generation process.
Methods: The study employed two ultrasound datasets: a base dataset (Db) of knee recess distension images from non-hemophiliac patients and a target dataset (Dt) of hemarthrosis images from hemophiliac patients. The synthetic generation framework included a content generator (Gc) trained on Db and a context generator (Gs) to adapt these images to match Dt's context. This approach generated a synthetic target dataset (Ds), primed for AI training in rare disease research. The assessment of synthetic image generation involved expert evaluations, statistical analysis, and the use of domain-invariant perceptual distance and Fréchet inception distance for quality measurement.
Results: Expert evaluation revealed that images produced by our synthetic generation framework were comparable to real ones, with no significant difference in overall quality or anatomical accuracy. Additionally, the use of synthetic data in training convolutional neural networks demonstrated robustness in detecting hemarthrosis, especially with limited sample sizes.
Conclusion: This study presents a novel approach for generating synthetic ultrasound images for rare disease detection, such as hemarthrosis in hemophiliac knees. By leveraging deep generative models and integrating domain knowledge, the proposed framework successfully addresses the limitations of sparse datasets and enhances AI model training and robustness. The synthetic images produced are of high quality and contribute significantly to AI-driven diagnostics in rare diseases, highlighting the potential of synthetic data in medical imaging.
期刊介绍:
The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.