Noninvasive machine-learning models for the detection of lesion-specific ischemia in patients with stable angina with intermediate stenosis severity on coronary CT angiography.

IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Hiroshi Hamasaki, Hidetaka Arimura, Yuzo Yamasaki, Takayuki Yamamoto, Mitsuhiro Fukata, Tetsuya Matoba, Toyoyuki Kato, Kousei Ishigami
{"title":"Noninvasive machine-learning models for the detection of lesion-specific ischemia in patients with stable angina with intermediate stenosis severity on coronary CT angiography.","authors":"Hiroshi Hamasaki, Hidetaka Arimura, Yuzo Yamasaki, Takayuki Yamamoto, Mitsuhiro Fukata, Tetsuya Matoba, Toyoyuki Kato, Kousei Ishigami","doi":"10.1007/s13246-024-01503-z","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposed noninvasive machine-learning models for the detection of lesion-specific ischemia (LSI) in patients with stable angina with intermediate stenosis severity based on coronary computed tomography (CT) angiography. This single-center retrospective study analyzed 76 patients (99 vessels) with stable angina who underwent coronary CT angiography (CCTA) and had intermediate stenosis severity (40-69%) on invasive coronary angiography. LSI, defined as a resting full-cycle ratio < 0.86 or fractional flow reserve ≤ 0.80, was determined in 40 patients (46 vessels) using a hybrid resting full-cycle ratio-fractional flow reserve strategy. The resting full-cycle ratio and/or fractional flow reserve were measured using invasive coronary angiography as references for functional severity indices of coronary stenosis in the machine-learning models. LSI detection models were constructed using noninvasive machine-learning models that predicted the resting full-cycle ratio and fractional flow reserve by feeding machine-learning models with image features extracted from CCTA. The diagnostic performance of the proposed LSI detection models was assessed using a nested 10-fold cross-validation test. The LSI detection models with the highest diagnostic performance achieved an accuracy of 0.88 (95% CI: 0.81, 0.94), sensitivity of 0.78 (95% CI: 0.70, 0.86) and specificity of 0.96 (95% CI: 0.92, 1.00) on a vessel basis and 0.88 (95% CI: 0.81, 0.95), 0.80 (95% CI: 0.70, 0.86) and 0.97 (95% CI: 0.92, 1.00), respectively, on a patient basis. These findings suggest that LSI detection models with features extracted from CCTA can noninvasively detect LSI in patients with stable angina with intermediate stenosis severity.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-024-01503-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposed noninvasive machine-learning models for the detection of lesion-specific ischemia (LSI) in patients with stable angina with intermediate stenosis severity based on coronary computed tomography (CT) angiography. This single-center retrospective study analyzed 76 patients (99 vessels) with stable angina who underwent coronary CT angiography (CCTA) and had intermediate stenosis severity (40-69%) on invasive coronary angiography. LSI, defined as a resting full-cycle ratio < 0.86 or fractional flow reserve ≤ 0.80, was determined in 40 patients (46 vessels) using a hybrid resting full-cycle ratio-fractional flow reserve strategy. The resting full-cycle ratio and/or fractional flow reserve were measured using invasive coronary angiography as references for functional severity indices of coronary stenosis in the machine-learning models. LSI detection models were constructed using noninvasive machine-learning models that predicted the resting full-cycle ratio and fractional flow reserve by feeding machine-learning models with image features extracted from CCTA. The diagnostic performance of the proposed LSI detection models was assessed using a nested 10-fold cross-validation test. The LSI detection models with the highest diagnostic performance achieved an accuracy of 0.88 (95% CI: 0.81, 0.94), sensitivity of 0.78 (95% CI: 0.70, 0.86) and specificity of 0.96 (95% CI: 0.92, 1.00) on a vessel basis and 0.88 (95% CI: 0.81, 0.95), 0.80 (95% CI: 0.70, 0.86) and 0.97 (95% CI: 0.92, 1.00), respectively, on a patient basis. These findings suggest that LSI detection models with features extracted from CCTA can noninvasively detect LSI in patients with stable angina with intermediate stenosis severity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信