An exploratory multi-omics study reveals distinct molecular signatures of ulcerative colitis and Crohn's disease and their correlation with disease activity
Nguyen Tran Nam Tien , Eun Jeong Choi , Nguyen Quang Thu , Seung Jung Yu , Duc Ninh Nguyen , Dong Hyun Kim , Nguyen Phuoc Long , Hong Sub Lee
{"title":"An exploratory multi-omics study reveals distinct molecular signatures of ulcerative colitis and Crohn's disease and their correlation with disease activity","authors":"Nguyen Tran Nam Tien , Eun Jeong Choi , Nguyen Quang Thu , Seung Jung Yu , Duc Ninh Nguyen , Dong Hyun Kim , Nguyen Phuoc Long , Hong Sub Lee","doi":"10.1016/j.jpba.2024.116652","DOIUrl":null,"url":null,"abstract":"<div><div>Clinically heterogeneous spectrum and molecular phenotypes of inflammatory bowel disease (IBD) remain to be comprehensively elucidated. This exploratory multi-omics study investigated the serum molecular profiles of Crohn's disease (CD) and ulcerative colitis (UC), in association with elevated fecal calprotectin and disease activity states. The serum proteome, metabolome, and lipidome of 75 treated IBD patients were profiled. Single- and multi-omic data analysis was performed to determine differential analytes and integrative biosignatures for biological interpretations. We found that chronic inflammation, phosphatidylcholines and bile acid homeostasis disturbances underlined the differences between CD and UC. Besides, elevated calprotectin was associated with higher levels of inflammatory proteins and sphingomyelins (SM) and lower levels of bile acids, amino acids, and triacylglycerols (TG). Relative to the remission disease state, the active form was characterized by decreased abundances of SMs and increased abundances of inflammatory proteins and TGs. We also observed that molecular changes upon treatment escalation were putatively related to altered levels of inflammatory response proteins, amino acids, and TGs. ISM1, ANGPTL4, chenodeoxycholate, Cer(18:1;2 O/24:1), and TG were identified as candidates subject to further investigation. Altogether, our study revealed that disturbances in immune response, bile acid homeostasis, amino acids, and lipids potentially underlie the clinically heterogeneous spectrum of IBD.</div></div>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":"255 ","pages":"Article 116652"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0731708524006940","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Clinically heterogeneous spectrum and molecular phenotypes of inflammatory bowel disease (IBD) remain to be comprehensively elucidated. This exploratory multi-omics study investigated the serum molecular profiles of Crohn's disease (CD) and ulcerative colitis (UC), in association with elevated fecal calprotectin and disease activity states. The serum proteome, metabolome, and lipidome of 75 treated IBD patients were profiled. Single- and multi-omic data analysis was performed to determine differential analytes and integrative biosignatures for biological interpretations. We found that chronic inflammation, phosphatidylcholines and bile acid homeostasis disturbances underlined the differences between CD and UC. Besides, elevated calprotectin was associated with higher levels of inflammatory proteins and sphingomyelins (SM) and lower levels of bile acids, amino acids, and triacylglycerols (TG). Relative to the remission disease state, the active form was characterized by decreased abundances of SMs and increased abundances of inflammatory proteins and TGs. We also observed that molecular changes upon treatment escalation were putatively related to altered levels of inflammatory response proteins, amino acids, and TGs. ISM1, ANGPTL4, chenodeoxycholate, Cer(18:1;2 O/24:1), and TG were identified as candidates subject to further investigation. Altogether, our study revealed that disturbances in immune response, bile acid homeostasis, amino acids, and lipids potentially underlie the clinically heterogeneous spectrum of IBD.
期刊介绍:
This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome.
Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.