Boqin Cai;Weiling Chen;Jianghe Zhang;Naveed Ur Rehman Junejo;Tiesong Zhao
{"title":"Unified No-Reference Quality Assessment for Sonar Imaging and Processing","authors":"Boqin Cai;Weiling Chen;Jianghe Zhang;Naveed Ur Rehman Junejo;Tiesong Zhao","doi":"10.1109/TGRS.2024.3524835","DOIUrl":null,"url":null,"abstract":"Sonar technology has been widely used in underwater surface mapping and remote object detection for its light-independent characteristics. Recently, the booming of artificial intelligence further surges sonar image (SI) processing and understanding techniques. However, the intricate marine environments and diverse nonlinear postprocessing operations may degrade the quality of SIs, impeding accurate interpretation of underwater information. Efficient image quality assessment (IQA) methods are crucial for quality monitoring in sonar imaging and processing. Existing IQA methods overlook the unique characteristics of SIs or focus solely on typical distortions in specific scenarios, which limits their generalization capability. In this article, we propose a unified sonar IQA method, which overcomes the challenges posed by diverse distortions. Though degradation conditions are changeable, ideal SIs consistently require certain properties that must be task-centered and exhibit attribute consistency. We derive a comprehensive set of quality attributes from both the task background and visual content of SIs. These attribute features are represented in just ten dimensions and ultimately mapped to the quality score. To validate the effectiveness of our method, we construct the first comprehensive SI dataset. Experimental results demonstrate the superior performance and robustness of the proposed method.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":"63 ","pages":"1-11"},"PeriodicalIF":8.6000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10819447/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Sonar technology has been widely used in underwater surface mapping and remote object detection for its light-independent characteristics. Recently, the booming of artificial intelligence further surges sonar image (SI) processing and understanding techniques. However, the intricate marine environments and diverse nonlinear postprocessing operations may degrade the quality of SIs, impeding accurate interpretation of underwater information. Efficient image quality assessment (IQA) methods are crucial for quality monitoring in sonar imaging and processing. Existing IQA methods overlook the unique characteristics of SIs or focus solely on typical distortions in specific scenarios, which limits their generalization capability. In this article, we propose a unified sonar IQA method, which overcomes the challenges posed by diverse distortions. Though degradation conditions are changeable, ideal SIs consistently require certain properties that must be task-centered and exhibit attribute consistency. We derive a comprehensive set of quality attributes from both the task background and visual content of SIs. These attribute features are represented in just ten dimensions and ultimately mapped to the quality score. To validate the effectiveness of our method, we construct the first comprehensive SI dataset. Experimental results demonstrate the superior performance and robustness of the proposed method.
期刊介绍:
IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.