The role of third component in coumarin-based all-small-molecule ternary organic solar cells with non-fullerene acceptor based on molecular stacking.

Li-Li Wang, Hai-Ping Zhou, Zhi-Wen Zhao, Qing-Qing Pan, Xing-Man Liu, Jin-Hong Han, Zhongmin Su
{"title":"The role of third component in coumarin-based all-small-molecule ternary organic solar cells with non-fullerene acceptor based on molecular stacking.","authors":"Li-Li Wang, Hai-Ping Zhou, Zhi-Wen Zhao, Qing-Qing Pan, Xing-Man Liu, Jin-Hong Han, Zhongmin Su","doi":"10.1016/j.saa.2024.125624","DOIUrl":null,"url":null,"abstract":"<p><p>The power conversion efficiency (PCE) of ternary all-small-molecule organic solar cells (T-ASM-OSCs) differs significantly from that of the polymer systems (2 %), and the role of third component remains unclear. The electron donor of coumarin derivatives with simple structure and strong and broad light absorption has high PCE for T-ASM-OSCs composed of non-fullerene acceptors (Y6 and DBTBT-IC). Here, we calculated the electronic structure and interfacial properties of the binary C1-CN:Y6 and ternary C1-CN:Y6:DBTBT-IC systems using molecular dynamic (MD) simulations and density functional theory (DFT) to explore the role of the third component (DBTBT-IC). The addition of the third component mainly facilitates the different stacking patterns of the host system in ternary OSCs, optimizes the charge transfer properties, enhances the light absorption, generates more CT pathways and significantly promotes the charge separation for unfavorable stacking patterns. While the guest system composed of C1-CN:DBTBT-IC also leads to the ternary system with more stable stacking patterns and low exciton binding energy. This work elucidates the role of the third component and the importance of interfacial molecular stacking, providing theoretical guidance for the selection and design of organic photovoltaic materials.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"329 ","pages":"125624"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.saa.2024.125624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The power conversion efficiency (PCE) of ternary all-small-molecule organic solar cells (T-ASM-OSCs) differs significantly from that of the polymer systems (2 %), and the role of third component remains unclear. The electron donor of coumarin derivatives with simple structure and strong and broad light absorption has high PCE for T-ASM-OSCs composed of non-fullerene acceptors (Y6 and DBTBT-IC). Here, we calculated the electronic structure and interfacial properties of the binary C1-CN:Y6 and ternary C1-CN:Y6:DBTBT-IC systems using molecular dynamic (MD) simulations and density functional theory (DFT) to explore the role of the third component (DBTBT-IC). The addition of the third component mainly facilitates the different stacking patterns of the host system in ternary OSCs, optimizes the charge transfer properties, enhances the light absorption, generates more CT pathways and significantly promotes the charge separation for unfavorable stacking patterns. While the guest system composed of C1-CN:DBTBT-IC also leads to the ternary system with more stable stacking patterns and low exciton binding energy. This work elucidates the role of the third component and the importance of interfacial molecular stacking, providing theoretical guidance for the selection and design of organic photovoltaic materials.

基于分子堆叠的非富勒烯受体的香豆素基全小分子三元有机太阳能电池中第三组分的作用。
三元全小分子有机太阳能电池(T-ASM-OSCs)的功率转换效率(PCE)与聚合物系统(2%)有显著差异,第三组分的作用尚不清楚。香豆素衍生物的电子给体结构简单,光吸收强且宽,对由非富勒烯受体(Y6和DBTBT-IC)组成的T-ASM-OSCs具有较高的PCE。本文采用分子动力学(MD)模拟和密度泛函理论(DFT)计算了二元C1-CN:Y6和三元C1-CN:Y6:DBTBT-IC体系的电子结构和界面性质,探讨了第三组分(DBTBT-IC)的作用。第三组分的加入主要促进了三元osc中宿主体系的不同堆叠模式,优化了电荷转移特性,增强了光吸收,产生了更多的CT通路,并显著促进了不利堆叠模式下的电荷分离。而由C1-CN:DBTBT-IC组成的客体体系也可以得到更稳定的堆叠模式和低激子结合能的三元体系。本工作阐明了第三组分的作用和界面分子堆积的重要性,为有机光伏材料的选择和设计提供了理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信