Adam Wojtulewski, Aleksandra Sikora, Sean Dineen, Mustafa Raoof, Aleksandra Karolak
{"title":"Using artificial intelligence and statistics for managing peritoneal metastases from gastrointestinal cancers.","authors":"Adam Wojtulewski, Aleksandra Sikora, Sean Dineen, Mustafa Raoof, Aleksandra Karolak","doi":"10.1093/bfgp/elae049","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The primary objective of this study is to investigate various applications of artificial intelligence (AI) and statistical methodologies for analyzing and managing peritoneal metastases (PM) caused by gastrointestinal cancers.</p><p><strong>Methods: </strong>Relevant keywords and search criteria were comprehensively researched on PubMed and Google Scholar to identify articles and reviews related to the topic. The AI approaches considered were conventional machine learning (ML) and deep learning (DL) models, and the relevant statistical approaches included biostatistics and logistic models.</p><p><strong>Results: </strong>The systematic literature review yielded nearly 30 articles meeting the predefined criteria. Analyses of these studies showed that AI methodologies consistently outperformed traditional statistical approaches. In the AI approaches, DL consistently produced the most precise results, while classical ML demonstrated varied performance but maintained high predictive accuracy. The sample size was the recurring factor that increased the accuracy of the predictions for models of the same type.</p><p><strong>Conclusions: </strong>AI and statistical approaches can detect PM developing among patients with gastrointestinal cancers. Therefore, if clinicians integrated these approaches into diagnostics and prognostics, they could better analyze and manage PM, enhancing clinical decision-making and patients' outcomes. Collaboration across multiple institutions would also help in standardizing methods for data collection and allowing consistent results.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735730/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in Functional Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elae049","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: The primary objective of this study is to investigate various applications of artificial intelligence (AI) and statistical methodologies for analyzing and managing peritoneal metastases (PM) caused by gastrointestinal cancers.
Methods: Relevant keywords and search criteria were comprehensively researched on PubMed and Google Scholar to identify articles and reviews related to the topic. The AI approaches considered were conventional machine learning (ML) and deep learning (DL) models, and the relevant statistical approaches included biostatistics and logistic models.
Results: The systematic literature review yielded nearly 30 articles meeting the predefined criteria. Analyses of these studies showed that AI methodologies consistently outperformed traditional statistical approaches. In the AI approaches, DL consistently produced the most precise results, while classical ML demonstrated varied performance but maintained high predictive accuracy. The sample size was the recurring factor that increased the accuracy of the predictions for models of the same type.
Conclusions: AI and statistical approaches can detect PM developing among patients with gastrointestinal cancers. Therefore, if clinicians integrated these approaches into diagnostics and prognostics, they could better analyze and manage PM, enhancing clinical decision-making and patients' outcomes. Collaboration across multiple institutions would also help in standardizing methods for data collection and allowing consistent results.
期刊介绍:
Briefings in Functional Genomics publishes high quality peer reviewed articles that focus on the use, development or exploitation of genomic approaches, and their application to all areas of biological research. As well as exploring thematic areas where these techniques and protocols are being used, articles review the impact that these approaches have had, or are likely to have, on their field. Subjects covered by the Journal include but are not restricted to: the identification and functional characterisation of coding and non-coding features in genomes, microarray technologies, gene expression profiling, next generation sequencing, pharmacogenomics, phenomics, SNP technologies, transgenic systems, mutation screens and genotyping. Articles range in scope and depth from the introductory level to specific details of protocols and analyses, encompassing bacterial, fungal, plant, animal and human data.
The editorial board welcome the submission of review articles for publication. Essential criteria for the publication of papers is that they do not contain primary data, and that they are high quality, clearly written review articles which provide a balanced, highly informative and up to date perspective to researchers in the field of functional genomics.