Hang Man Cho, Jae-Ryeong Choi, Jung-Hwan Moon, Kyu-Jin Cho, Seung-Won Kim
{"title":"Evaluation of an assistive exosuit for alleviating neck and shoulder muscle fatigue during prolonged flexed neck posture.","authors":"Hang Man Cho, Jae-Ryeong Choi, Jung-Hwan Moon, Kyu-Jin Cho, Seung-Won Kim","doi":"10.1186/s12984-024-01540-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Neck pain affects 203 million people globally and is prevalent in various settings due to factors like poor posture, lack of exercise, and occupational hazards. Therefore, addressing ergonomic issues with solutions like a wearable robotic device is crucial. This research presents a novel assistive exosuit, characterized by its slim and lightweight structure and intuitive control without the use of hands, designed to mitigate muscle fatigue in the neck and shoulders during prolonged flexed neck posture. The efficacy of the exosuit was confirmed through human experiments and user surveys.</p><p><strong>Methods: </strong>The preliminary feasibility experiment was conducted with five subjects for 15 min to verify the effect of supporting the weight of the head with a wire on reducing neck muscle fatigue. The prime experiment was conducted with 26 subjects for 15 min to quantitatively evaluate the reduction in muscle fatigue achieved by wearing the exosuit and to assess its qualitative usability from the user's perspective. For all experiments, surface electromyography (sEMG) data was measured from upper trapezius (UT) and splenius capitis (SC) muscles, the two representative superficial muscles responsible for sustaining flexed neck posture. The analysis of the device's efficiency utilized two parameters: the normalized root mean square value (nRMS), which was employed to assess muscle activity, and the normalized median frequency (nMDF), which was utilized to gauge the extent of muscle fatigue. These parameters were statistically analyzed with the IBM SPSS statistic program.</p><p><strong>Results: </strong>When wearing the exosuit, the nMDF of UT and SC increased by 7.18% (p < 0.05) and 5.38% (p < 0.05), respectively. For the nRMS, no significant differences were observed in either muscle. The nMDF slope of UT and SC increased by 0.63%/min (p < 0.01) and 0.34%/min (no significance). In the context of the nRMS slope, UT exhibited a reduction of 0.021% MVC/min (p < 0.05), while SC did not demonstrate any statistically significant outcomes. The exosuit received an average system usability scale score of 66.83.</p><p><strong>Conclusions: </strong>Based on both qualitative and quantitative evaluations, our proposed assistive exosuit demonstrated that it promises the significant reduction of muscle fatigue in the neck and shoulders.</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":"21 1","pages":"232"},"PeriodicalIF":5.2000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687197/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroEngineering and Rehabilitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12984-024-01540-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Neck pain affects 203 million people globally and is prevalent in various settings due to factors like poor posture, lack of exercise, and occupational hazards. Therefore, addressing ergonomic issues with solutions like a wearable robotic device is crucial. This research presents a novel assistive exosuit, characterized by its slim and lightweight structure and intuitive control without the use of hands, designed to mitigate muscle fatigue in the neck and shoulders during prolonged flexed neck posture. The efficacy of the exosuit was confirmed through human experiments and user surveys.
Methods: The preliminary feasibility experiment was conducted with five subjects for 15 min to verify the effect of supporting the weight of the head with a wire on reducing neck muscle fatigue. The prime experiment was conducted with 26 subjects for 15 min to quantitatively evaluate the reduction in muscle fatigue achieved by wearing the exosuit and to assess its qualitative usability from the user's perspective. For all experiments, surface electromyography (sEMG) data was measured from upper trapezius (UT) and splenius capitis (SC) muscles, the two representative superficial muscles responsible for sustaining flexed neck posture. The analysis of the device's efficiency utilized two parameters: the normalized root mean square value (nRMS), which was employed to assess muscle activity, and the normalized median frequency (nMDF), which was utilized to gauge the extent of muscle fatigue. These parameters were statistically analyzed with the IBM SPSS statistic program.
Results: When wearing the exosuit, the nMDF of UT and SC increased by 7.18% (p < 0.05) and 5.38% (p < 0.05), respectively. For the nRMS, no significant differences were observed in either muscle. The nMDF slope of UT and SC increased by 0.63%/min (p < 0.01) and 0.34%/min (no significance). In the context of the nRMS slope, UT exhibited a reduction of 0.021% MVC/min (p < 0.05), while SC did not demonstrate any statistically significant outcomes. The exosuit received an average system usability scale score of 66.83.
Conclusions: Based on both qualitative and quantitative evaluations, our proposed assistive exosuit demonstrated that it promises the significant reduction of muscle fatigue in the neck and shoulders.
期刊介绍:
Journal of NeuroEngineering and Rehabilitation considers manuscripts on all aspects of research that result from cross-fertilization of the fields of neuroscience, biomedical engineering, and physical medicine & rehabilitation.