The cadenza woodwind dataset: Synthesised quartets for music information retrieval and machine learning.

IF 1 Q3 MULTIDISCIPLINARY SCIENCES
Data in Brief Pub Date : 2024-12-04 eCollection Date: 2024-12-01 DOI:10.1016/j.dib.2024.111199
Gerardo Roa Dabike, Trevor J Cox, Alex J Miller, Bruno M Fazenda, Simone Graetzer, Rebecca R Vos, Michael A Akeroyd, Jennifer Firth, William M Whitmer, Scott Bannister, Alinka Greasley, Jon P Barker
{"title":"The cadenza woodwind dataset: Synthesised quartets for music information retrieval and machine learning.","authors":"Gerardo Roa Dabike, Trevor J Cox, Alex J Miller, Bruno M Fazenda, Simone Graetzer, Rebecca R Vos, Michael A Akeroyd, Jennifer Firth, William M Whitmer, Scott Bannister, Alinka Greasley, Jon P Barker","doi":"10.1016/j.dib.2024.111199","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents the Cadenza Woodwind Dataset. This publicly available data is synthesised audio for woodwind quartets including renderings of each instrument in isolation. The data was created to be used as training data within Cadenza's second open machine learning challenge (CAD2) for the task on rebalancing classical music ensembles. The dataset is also intended for developing other music information retrieval (MIR) algorithms using machine learning. It was created because of the lack of large-scale datasets of classical woodwind music with separate audio for each instrument and permissive license for reuse. Music scores were selected from the OpenScore String Quartet corpus. These were rendered for two woodwind ensembles of (i) flute, oboe, clarinet and bassoon; and (ii) flute, oboe, alto saxophone and bassoon. This was done by a professional music producer using industry-standard software. Virtual instruments were used to create the audio for each instrument using software that interpreted expression markings in the score. Convolution reverberation was used to simulate a performance space and the ensembles mixed. The dataset consists of the audio and associated metadata.</p>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"57 ","pages":"111199"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683209/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.dib.2024.111199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the Cadenza Woodwind Dataset. This publicly available data is synthesised audio for woodwind quartets including renderings of each instrument in isolation. The data was created to be used as training data within Cadenza's second open machine learning challenge (CAD2) for the task on rebalancing classical music ensembles. The dataset is also intended for developing other music information retrieval (MIR) algorithms using machine learning. It was created because of the lack of large-scale datasets of classical woodwind music with separate audio for each instrument and permissive license for reuse. Music scores were selected from the OpenScore String Quartet corpus. These were rendered for two woodwind ensembles of (i) flute, oboe, clarinet and bassoon; and (ii) flute, oboe, alto saxophone and bassoon. This was done by a professional music producer using industry-standard software. Virtual instruments were used to create the audio for each instrument using software that interpreted expression markings in the score. Convolution reverberation was used to simulate a performance space and the ensembles mixed. The dataset consists of the audio and associated metadata.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信