Victor Caso Moreira, Artur Fernando de Vito, Fabrizio Leonardi, Sergio Delijaicov, Rodrigo Magnabosco
{"title":"Surface roughness and profile dataset of Ti6Al4V textured by laser ablation and spark erosion.","authors":"Victor Caso Moreira, Artur Fernando de Vito, Fabrizio Leonardi, Sergio Delijaicov, Rodrigo Magnabosco","doi":"10.1016/j.dib.2024.111185","DOIUrl":null,"url":null,"abstract":"<p><p>The Ti6Al4V alloy is widely recognized for its extensive industrial applications, particularly in the aeronautics sector, due to its exceptional strength to-weight ratio and corrosion resistance. In this context, many industrial processes depend critically on surface area, topology, and roughness. A promising approach involves combining Ti6Al4V alloy with polymer composites, which offers significant potential for engineers to design parts that are not only high-performing but also environmentally friendly. Friction stir spot welding (FSSW) emerges as a viable technique for achieving a robust bond between the metal and polymer composite materials. However, a critical factor in this process is the surface profile of the metal, which plays a pivotal role in ensuring strong adhesion between the polymer and the titanium substrate. The data provided focus on analyzing the surface profile and roughness achieved through laser ablation, an advanced technique used for surface texturing, and explores spark erosion as an alternative method.</p>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"57 ","pages":"111185"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683252/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.dib.2024.111185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Ti6Al4V alloy is widely recognized for its extensive industrial applications, particularly in the aeronautics sector, due to its exceptional strength to-weight ratio and corrosion resistance. In this context, many industrial processes depend critically on surface area, topology, and roughness. A promising approach involves combining Ti6Al4V alloy with polymer composites, which offers significant potential for engineers to design parts that are not only high-performing but also environmentally friendly. Friction stir spot welding (FSSW) emerges as a viable technique for achieving a robust bond between the metal and polymer composite materials. However, a critical factor in this process is the surface profile of the metal, which plays a pivotal role in ensuring strong adhesion between the polymer and the titanium substrate. The data provided focus on analyzing the surface profile and roughness achieved through laser ablation, an advanced technique used for surface texturing, and explores spark erosion as an alternative method.
期刊介绍:
Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.