Photovoltaic module dataset for automated fault detection and analysis in large photovoltaic systems using photovoltaic module fault detection.

IF 1 Q3 MULTIDISCIPLINARY SCIENCES
Data in Brief Pub Date : 2024-12-02 eCollection Date: 2024-12-01 DOI:10.1016/j.dib.2024.111184
Rotimi-Williams Bello, Pius A Owolawi, Etienne A van Wyk, Chunling Du
{"title":"Photovoltaic module dataset for automated fault detection and analysis in large photovoltaic systems using photovoltaic module fault detection.","authors":"Rotimi-Williams Bello, Pius A Owolawi, Etienne A van Wyk, Chunling Du","doi":"10.1016/j.dib.2024.111184","DOIUrl":null,"url":null,"abstract":"<p><p>Solar energy has become the fastest growing renewable and alternative source of energy. However, there is little or no open-source datasets to advance research knowledge in photovoltaic related systems. The work presented in this article is a step towards deriving Photo-Voltaic Module Dataset (PVMD) of thermal images and ensuring they are publicly available. The work provides a PVMD dataset comprising a total of 1000 self-acquired and augmented images. The dataset includes both permanent and temporal anomalies, namely Hotspots, Cracks, and Shadings. The dataset was collected on September 5, 2024 at the Soshanguve South Campus, Tshwane University of Technology, South Africa using DJI Mavic 3 Thermal's high-resolution thermal and visual imaging capabilities. DJI Mavic 3 Thermal coupled with its advanced flight features makes it an excellent tool for precise and efficient inspections of PV systems. The laboratory experiment performed on the dataset lasted one week. The work aims to provide supervised dataset good enough to support research method in providing a comprehensive and efficient approach to monitoring and maintaining large PV systems. Extensive analysis of the thermal data reveals the anomalies as indicative of faults in the solar cells of PV module, thereby opening up advancement in solar energy research. Because the data comes from a single-day collection and one week laboratory experiment, it makes the data more suitable for testing algorithms designed for fault detection. The dataset is publicly and freely available to the scientific community at 10.17632/5ssmfpgrpc.1.</p>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"57 ","pages":"111184"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683254/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.dib.2024.111184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Solar energy has become the fastest growing renewable and alternative source of energy. However, there is little or no open-source datasets to advance research knowledge in photovoltaic related systems. The work presented in this article is a step towards deriving Photo-Voltaic Module Dataset (PVMD) of thermal images and ensuring they are publicly available. The work provides a PVMD dataset comprising a total of 1000 self-acquired and augmented images. The dataset includes both permanent and temporal anomalies, namely Hotspots, Cracks, and Shadings. The dataset was collected on September 5, 2024 at the Soshanguve South Campus, Tshwane University of Technology, South Africa using DJI Mavic 3 Thermal's high-resolution thermal and visual imaging capabilities. DJI Mavic 3 Thermal coupled with its advanced flight features makes it an excellent tool for precise and efficient inspections of PV systems. The laboratory experiment performed on the dataset lasted one week. The work aims to provide supervised dataset good enough to support research method in providing a comprehensive and efficient approach to monitoring and maintaining large PV systems. Extensive analysis of the thermal data reveals the anomalies as indicative of faults in the solar cells of PV module, thereby opening up advancement in solar energy research. Because the data comes from a single-day collection and one week laboratory experiment, it makes the data more suitable for testing algorithms designed for fault detection. The dataset is publicly and freely available to the scientific community at 10.17632/5ssmfpgrpc.1.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信